DOI QR코드

DOI QR Code

육상의 직립구조물에 미치는 지진 해일에 의한 수평 파력 및 파압에 대한 수리모형실험

Physical Modeling of Horizontal Force on the Inland Vertical Structure by Tsunami-like Waves

  • Park, Hyongsu (Department of Civil and Construction Engineering, Oregon State University) ;
  • Cox, Daniel (Department of Civil and Construction Engineering, Oregon State University) ;
  • Shin, Sungwon (Department of Marine Science and Convergence Engineering, Hanyang University ERICA)
  • 투고 : 2017.11.28
  • 심사 : 2017.12.23
  • 발행 : 2017.12.31

초록

지진해일은 그 파랑이 연안 도시로 범람하여 육상 구조물에 피해를 주게 된다. 육상 구조물에 미치는 파압 및 파력에 대한 연구는 육상 구조물의 안정성 설계의 중요한 요인 중 하나이다. 본 연구에서는 단순화한 박스구조물에 미치는 지진 해일의 수평 파력 및 파압에 대한 2차원 단면 수리모형실험을 수행하였다. 시간에 따른 수평 파압의 수직 분포와 파력을 파압계와 파력계를 사용하여 계측하여 상호 비교하였다. 또한, 쇄파의 형태도 다양하게 고려하여 계측하였다. 쇄파된 파랑이 입사하는 경우 구조물에 미치는 수평 파력이 최대가 되는 순간에는 수평 파압이 수직적으로 균일하였고, 그 외의 경우에는 육상 저면에 가까울수록 수평 파압이 커지는 분포를 보였다. 최대 수평 파력을 다양한 입사파랑 조건에 대한 함수로 표현하기 위해 쇄파상사계수를 사용하여 수평 파력과의 관계식을 산출하였다. 그 결과 무차원화한 수평 파력은 쇄파상사계수가 증가함에 따라 지수적으로 감소하는 경향을 있음을 보였다.

The tsunami flood the coastal cities and damage the land structures. The study on wave pressure and force on land structures is one of the important factors in designing the stability of inland structures. In this study, two - dimensional wave flume tests on the horizontal wave force and pressure of tsunamis on a simplified box-type structure was conducted. Vertical distribution and wave power of horizontal wave pressure over time were measured by pressure sensors and force transducer. Also, those were measured from the different wave breaking types. The vertical distribution of horizontal wave pressure was uniform at the moment when the horizontal wave force to the structure was maximum under the breaking wave condition. A surf similarity parameter was employed in order to figure out the relationship between the maximum horizontal wave force on the structure as a function of various incident wave conditions. As a result, the non - dimensionalized horizontal wave force tends to decrease exponentially as the surf similarity parameter increases.

키워드

참고문헌

  1. Baldock, T.E., Cox, D., Maddux, T., Killian, J. and Fayler, L.(2009). Kinematics of breaking tsunami wavefronts: A data set from large scale laboratory experiments. Coastal Engineering, 56, 506-516. https://doi.org/10.1016/j.coastaleng.2008.10.011
  2. Cho, M., Shin, S., Yoon, H.-D. and Cox, D.T. (2017). Numerical Simulation of Tsunami Force Acting on Vertical Walls. Journal of Coastal Research, SI 79, 289-293. https://doi.org/10.2112/SI79-059.1
  3. Goring, D.G. (1978). Tsunamis. The propagation of long waves onto a shelf. REP Kh-R-38,W. M. Keck Laboratory of Hydraulic and Water Resources, California Institute of Technology, Pasadena, CA.
  4. Lee, K.-H., Shin, S. and Kim, D.-S. (2014). Cross-shore variation of water surface elevation and velocity during the bore propagation. Journal of Coastal Research, SI 70, 533-538. https://doi.org/10.2112/SI70-090.1
  5. Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and runup. Geophysical Research Letters 38.
  6. Park, H., Cox, D.T., Lynett, P.J., Wiebe, D.M. and Shin, S. (2013). Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coastal Engineering, 79, 9-21. https://doi.org/10.1016/j.coastaleng.2013.04.002
  7. Park, H., Tomiczek, T., Cox, D.T., van de Lindt, J.W. and Lomonaco, P. (2017). Experimental modeling of horizontal and vertical wave forces on an elevated coastal structure. Coastal Engineering, 128, 58-74. https://doi.org/10.1016/j.coastaleng.2017.08.001
  8. Thomas, S. and Cox, D. (2012). Influence of finite-length seawalls for tsunami loading on coastal structures. J. Waterw. Port, Coast. Ocean Eng. 138 (3), 203-214. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000125
  9. Tomiczek, T., Prasetyo, A., Mori, N., Yasuda, T. and Kennedy, A. (2016). Physical modelling of tsunami onshore propagation, peak pressures, and shielding effects in an urban building array. Coastal Engineering, 117, 97-112. https://doi.org/10.1016/j.coastaleng.2016.07.003