DOI QR코드

DOI QR Code

오일러형 해빈류 모형의 파랑응력 비교

Comparison of Wave Stresses in the Eulerian Nearshore Current Models

  • 안경모 (한동대학교 공간환경시스템공학부) ;
  • 서경덕 (서울대학교 건설환경종합연구소) ;
  • 천후섭 (삼성전자(주))
  • Ahn, Kyungmo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Suh, Kyung-Duck (Institute of Construction and Environmental Engineering, Seoul National University) ;
  • Chun, Hwusub (Memory Manufacturing Technology Center, Samsung Electronics Co. Ltd.)
  • 투고 : 2017.11.18
  • 심사 : 2017.12.22
  • 발행 : 2017.12.31

초록

오일러형 해빈류 모형은 계산된 질량흐름에 파랑질량흐름이 포함되어 있지 않기 때문에 수치모의된 계산결과를 정점 관측결과와 직접 비교할 수 있다. 또한 포물선형 연직분포를 가진 연안류를 재현할 수 있음으로 인해 라그랑지형 해빈류 모형보다 장점이 있다. 그러나 오일러형 해빈류 모형에서 파랑에 의한 응력인 파랑응력이 해빈류 모형에 따라 형태가 달라, 서로 다른 계산 결과가 나타나게 된다. Newberger and Allen(2007)의 파랑응력은 연직방향으로 수심의 함수가 아닌 상수인 반면에 Chun(2012)의 파랑응력은 수심의 함수로 표현된다. 이러한 차이는 해빈류 계산 결과에 직접적인 영향을 미치고 있어 본 논문에서는 이들 파랑응력의 차이를 해석적으로 비교하였다. 각 파랑응력에 대한 해빈류 모형을 Hamilton et al.(2001)의 LSTF(Large-scale Sediment Transport Facility) 수리모형 실험에 적용하여 차이를 비교함으로써 파랑응력항의 차이에 따른 해빈류 계산 결과의 특성을 검토하였다.

The Eulerian nearshore current model is more advantageous than the Lagrangian model in the way that numerical results from the Eulerian model can be directly compared with the measurements by the stationary equipment. It is because the wave mass flux is not included in the computed mass flux of Euleran nearshore current model. In addition, the Eulerian model can simulate the longshore currents with depth varying parabolic profile. However, the numerical models proposed by different researcher have different forms of the wave stress terms. For example, wave stresses in Newberger and Allen's (2007) model is constant over the depth, while those of Chun (2012) are vertically distributed. In the present study, these wave stress terms were compared against Hamilton et al.'s (2001) laboratory experiments to see the effects of different wave stress terms performed on the computation of nearshore currents.

키워드

참고문헌

  1. Chun, J. (2012). 3D Numerical Model of Nearshore Currents Considering Wave-Current Interaction. Ph.D dissertation, Seoul National University.
  2. Chun, J., Ahn, K. and Yoon, J.T. (2009). Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined Model for the Case of Typhoon Maemi. Journal of Korean Society of Coastal and Ocean Engineers, 21(1), 79-90 (in Korean).
  3. Chun, H. and Suh, K.-D. (2016). Wave-Induced Reynolds Stress In Three-Dimensional Nearshore Currents Model. Journal of Coastal Research, 32(4), 898-910.
  4. Chun, H. and Suh, K.-D. (2017). Analysis of Longshore Currents with an Eulerian Nearshore Currents Model. Journal of Coastal Research, doi:10.2112/JCOASTRES-D-16-00180.1.
  5. Chun, H., Kang, T.-S., Ahn, K., Jeong, W.M., Kim, T.-R. and Lee, D.-H. (2014). A Study on the Statistical Characteristics and Numerical Hindcasts of Storm Waves in the East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 26(2), 81-95 (in Korean). https://doi.org/10.9765/KSCOE.2014.26.2.81
  6. Dean, R.G. and Dalrymple, R.A. (1991). Water Wave Mechanics for Engineers and Scientists. World-Scientific Inc.
  7. Garcez Faria, A.F., Thornton, E.B., Stanton, T.P., Soares, C.V. and Lippmann, T.C. (1998). Vertical Profiles of Longshore Currents and Related Bed Shear Stress and Bottom Roughness. Journal of Geophysical Research, 103(c2), 3217-3232. https://doi.org/10.1029/97JC02265
  8. Garcez Faria, A.F., Thornton, E.B., Lippmann, T.C. and Stanton, T.P. (2000). Undertow over a Barred Beach. Journal of Geophysical Research, 105(c7), 16999-17010. https://doi.org/10.1029/2000JC900084
  9. Haas, K.A. and Warner, J.C. (2009). Comparing a Quasi-3D to Full 3D Nearshore Circulation Model: SHORECIRC and ROMS. Ocean Modelling, 26(1), 91-103. https://doi.org/10.1016/j.ocemod.2008.09.003
  10. Hamilton, D.G., Ebersole, B.A., Smith, E.R. and Wang, P. (2001). Development of a Large-Scale Laboratory Facility for Sediment Transport Research, U.S. Army Corps and Engineers.
  11. Holthuijsen, L.H. (2007). Waves in Oceanic and Coastal Waters. Cambridge University Press.
  12. Lee, Y.K. (2008). Devalopment and Application for a Layer-integrated Three-dimensional Numerical Model of Wave-induced Currents. Ph.D dissertation, Pukyong National University.
  13. Longuet-Higgins, M.S. and Stewart, R.W. (1964). Radiation Stress in a Water Waves; A Physical Discussion, with Applications. Deep-Sea Research, 11(4), 529-562.
  14. Madsen, O.S. (1994). Spectral Wave-Current Bottom Boundar Layer Flows. Proc. 24th Int'l Conf. Coastal Eng., Kobe, Japan., 384-398.
  15. Johnson, B. (2003). Model for the Computation of Time-Steady Neashore Currents. ERDC/CHL CHETN-VI-39. U.S Army Corps of Engineers.
  16. Nam, P.T., Larson, M., Hanson, H. and Hoan, L.X. (2009). A Numerical Model of Nearshore Waves, Currents, and Sediment Transport. Coastal Engineering, 56(11-12), 1084-1096. https://doi.org/10.1016/j.coastaleng.2009.06.007
  17. Newberger, P.A. and Allen, J.S. (2007). Forcing a Three-Dimensional, Hydrostatic, Primitive-Equation Model for Application in the Surf Zone: 1. Formulation. Journal of Geophysical Research, 112, doi:10.1029/2006JC003472.
  18. Rusu, E. and Guedes Soares, C. (2010). Validation of Two Wave and Nearshore Current Models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136(1), 27-45. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000023
  19. Smith, J.A. (2006). Wave-Current Interaction in Finite Water Depth. Journal of Physical Oceanography, 36(7), 1403-1419. https://doi.org/10.1175/JPO2911.1
  20. Sorensen, O.R., Schaeffer, H.A. and Madsen, P.A. (1998). Surf Zone Dynamics Simulated by a Boussinesq Type Model. III. Wave-Induced Horizontal Nearshore Circulations. Coastal Engineering, 33(2-3), 155-176. https://doi.org/10.1016/S0378-3839(98)00007-6
  21. Svendsen, I.A. (2006). Introduction to Nearshore Hydrodynamics. World-Scientific Inc.
  22. Svendsen, I.A., Qin, W. and Ebersole, B.A. (2003). Modelling Waves and Currents at the LSTF and Other Laboratory Facilities. Coastal Engineering, 50(1), 19-45. https://doi.org/10.1016/S0378-3839(03)00077-2
  23. Xia, H., Xia, Z. and Zhun, L. (2004). Vertical Variation in Radiation Stress and Wave-Induced Current. Coastal Engineering, 51(4), 309-321. https://doi.org/10.1016/j.coastaleng.2004.03.003
  24. Xie, L., Liu, H. and Peng, M. (2008). The Effect of Wave-Current Interactions on the Storm Surge and Inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20(3), 252-269. https://doi.org/10.1016/j.ocemod.2007.10.001
  25. Xie, M. (2011). Establishment, Validation and Discussions of a Three-Dimensional Wave-Induced Current Model. Ocean Modelling, 38(2), 230-243. https://doi.org/10.1016/j.ocemod.2011.03.006
  26. Wikramanyake, P.N. and Madsen, O.S. (1994). Calculation of Moveable Bed Friction Factors. Technical Report DACW-39-88-K-0047, Coastal Engineering Research Center, UACE.