DOI QR코드

DOI QR Code

설상사주 형성조건하에 있는 3차원투과성잠제 주변에서 수면변동의 특성

Characteristics of Water Surface Variations around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation

  • 이광호 (가톨릭관동대학교 에너지플랜트공학과) ;
  • 배주현 (한국해양대학교 대학원 토목환경공학과) ;
  • 안성욱 (한국해양대학교 대학원 토목환경공학과) ;
  • 김도삼 (한국해양대학교 건설공학과)
  • Lee, Kwang-Ho (Dept. of Energy and Plant Eng., Catholic Kwandong University) ;
  • Bae, Ju-Hyun (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • An, Sung-Wook (Dept. of Civil and Environmental Eng., Graduate School, Korea Maritime and Ocean University) ;
  • Kim, Do-Sam (Dept. of Civil Eng., Korea Maritime and Ocean Univ.)
  • 투고 : 2017.11.28
  • 심사 : 2017.12.19
  • 발행 : 2017.12.31

초록

수중에 설치되는 잠제는 해안침식을 방어하기 위한 대표적인 연안구조물로 지금까지 다양한 형태의 잠제가 제안 연구되어 왔다. 이와 같은 잠제는 천단에서의 급격한 수심변화에 의해 구조물 주변에서 복잡한 파동장을 형성한다. 본 연구는 3차원투과성잠제를 대상으로 잠제 주변에서 형성되는 파고분포 및 평균수위분포를 수치적으로 검토하였다. 수치해석에는 오픈소스 CFD 소스코드인 OLAFOAM을 적용하였으며, 투과성직립벽 및 불투과성 잠제에 대한 기존의 실험결과와의 비교를 통해 수치해석모델의 적용성을 검증하였다. 이를 바탕으로 설상사주의 형성조건에 있는 투과성잠제 주변에서 형성되는 파고분포 및 평균수위분포를 검토하였다. 수치해석결과, 잠제 사이의 개구부 폭이 감소할수록 개구부 중앙에서는 파고가 증가하지만 개구부 배후에서는 개구폭이 증가할수록 파고가 증가하며, 연안으로부터의 잠제 설치위치는 파고의 변화에 크게 영향을 미치지 않음을 확인하였다. 또한, 잠제의 개구부 폭이 감소함에 따라 잠제 개구부의 제두부 근방에서 평균수위 하강이 증가함을 확인하였다.

Submerged breakwaters installed under the water surface are a representative coastal structure to prevent coastal erosion, and various types of submerged breakwaters have been proposed and discussed so far. Generally, submerged breakwaters make the complex wave fields due to abrupt change in water depth at the crown of the breakwater. In this study, wave heights and mean water level formed around a breakwater are examined numerically for three-dimensional permeable submerged breakwaters. OLAFOAM, CFD open source code, is applied in the numerical analysis, and the comparisons are made with available experimental results on the permeable upright wall and the impermeable submerged breakwater to verify its applicability to the three-dimensional numerical analysis. Based on the applicability of OLAFOAM numerical code, the wave height and mean water level distribution formed around the permeable submerged breakwaters are investigated under the formation condition of salient. The numerical results show that as the gap width between breakwaters decreases, the wave height in the center of the gap increases, while it decreases behind the gap, and the installing position of the breakwater from the shoreline has little influence on the change of the wave height. Furthermore, it is found that the decrease of the mean water level near the gap between breakwaters increases with decreasing of the gap width.

키워드

참고문헌

  1. Billstein, M., Svensson, U. and Johansson, N. (1999). Development and validation of a numerical model of flow through embankment dams-comparisons with experimental data and analytical solutions. Transport in Porous Media, 35(3), 395-406. https://doi.org/10.1023/A:1006531729446
  2. Black, K.P. and Andrews, C.J. (2001). Sandy shoreline response to offshore obstacles Part 1: Salient and tombolo geometry and shape. J. Coastal Research, 82-93.
  3. Buccino, M. and Calabrese, M. (2007). Conceptual approach for prediction of wave transmission at low-crested breakwaters. J. Waterway, Port, Coastal, and Ocean Engineering, ASCE, 133(3), 213-224. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(213)
  4. d'Angremond, K., Van Der Meer, J.W. and De Jong, R.J. (1997). Wave transmission at low-crested structures. Proceedings of Coastal Engineering, ASCE, 2418-2427.
  5. del Jesus, M. (2011). Three-dimensional interaction of water waves with maritime structures, University of Cantabria, Ph.D. thesis.
  6. Garcia, N., Lara, J.L. and Losada, I.J. (2004). 2-D numerical analysis of near-field flow at low-crested permeable breakwaters. Coastal Engineering, 51(10), 991-1020. https://doi.org/10.1016/j.coastaleng.2004.07.017
  7. Ghosal, S., Lund, T., Moin, P. and Akselvoll, K. (1995). A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mechanics, 286, 229-255. https://doi.org/10.1017/S0022112095000711
  8. Goda, Y. and Ahrens, J.P. (2008). New formulation of wave transmission over and through low crested structures. Proceedings of Coastal Engineering, ASCE, 628-650.
  9. Higuera, P., Losada, I.J. and Lara, J.L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003
  10. Hsu, T.W., Hsieh, C.M. and Hwang, R.R. (2004). Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coastal Engineering, 51(7), 557-579. https://doi.org/10.1016/j.coastaleng.2004.06.003
  11. Jensen, B., Jacobsen, N.G. and Christensen, E.D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. https://doi.org/10.1016/j.coastaleng.2013.11.004
  12. Johnson, H.K. (2006). Wave modelling in the vicinity of submerged breakwaters. Coastal Engineering, 53(1), 39-48. https://doi.org/10.1016/j.coastaleng.2005.09.018
  13. Johnson, H.K., Karambas, T.V., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D. and Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters. Coastal Engineering, 52(10), 949-969. https://doi.org/10.1016/j.coastaleng.2005.09.011
  14. Kawasaki, K. and Iwata, K. (1999). Numerical analysis of wave breaking due to submerged breakwater in three-dimensional wave field. Proceedings of Coastal Engineering, ASCE, 853-866.
  15. Kissling, K., Springer, J., Jasak, H., Schutz, S., Urban, K. and Piesche, M. (2010). A coupled pressure based solution algorithm based on the volume-of-fluid approach for two or more immiscible fluids. European Conference on Computational Fluid Dynamics, ECCOMAS CFD.
  16. Kramer, M., Zanuttigh, B., Baoxing, W., van der Meer, J.W., Lamberti, A. and Burcharth, H.F. (2003). Wave basin experiments. Internal Report, DELOS deliverable D31. Available from the Internet www.delos.unibo.it.
  17. Lara, J.L., del Jesus, M. and Losada, I.J. (2012). Three-dimensional interaction of waves and porous coastal structures: Part II: Experimental validation. Coastal Engineering, 64, 26-46. https://doi.org/10.1016/j.coastaleng.2012.01.009
  18. Lara, J.L., Garcia, N. and Losada, I.J. (2006). RANS modelling applied to random wave interaction with submerged permeable structures. Coastal Engineering, 53(5), 395-417. https://doi.org/10.1016/j.coastaleng.2005.11.003
  19. Lee, K.H., Bae, J.H., An, S.W., Kim, D.S. and Bae, K.S. (2016). Numerical analysis on wave characteristics around submerged breakwater in wave and current coexisting field by OLAFOAM. Journal of Korean Society of Coastal and Ocean Engineers, 28(6), 332-349 (in Korean). https://doi.org/10.9765/KSCOE.2016.28.6.332
  20. Loveless, J.H. and MacLoed, B. (1999). The influence of set-up behind detached breakwaters. Proceedings of Coastal Engineering, ASCE, 2026-2041.
  21. Mendez, F.J., Losada, I.J. and Losada, M.A. (2001). Wave-induced mean magnitudes in permeable submerged breakwaters. J. Waterway, Port, Coastal, and Ocean Engineering, ASCE, 127(1), 7-15. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:1(7)
  22. Mizutani, N., Mostafa, A.M. and Iwata, K. (1998). Nonlinear regular wave, submerged breakwater and seabed dynamic interaction. Coastal Engineering, 33(2), 177-202. https://doi.org/10.1016/S0378-3839(98)00008-8
  23. Nobuoka, H., Irie, I., Kato, H. and Mimura, N. (1997). Regulation of nearshore circulation by submerged breakwater for shore protection. Proceedings of Coastal Engineering, ASCE, 2391-2403.
  24. Penney, W.G. and Price, A.T. (1952). Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 236-253.
  25. Ranasinghe, R.S., Sato, S. and Tajima, Y. (2009). Modeling of waves and currents around porous submerged breakwaters. Coastal Dynamics, 12.
  26. Seabrook, S.R. and Hall, K.R. (1999). Wave transmission at submerged rubblemound breakwaters. Proceedings of Coastal Engineering, ASCE, 2000-2013.
  27. Sharifahmadian, A. and Simons, R.R. (2014). A 3D numerical model of nearshore wave field behind submerged breakwaters. Coastal Engineering, 83, 190-204. https://doi.org/10.1016/j.coastaleng.2013.10.016
  28. Van der Meer, J.W., Briganti, R., Zanuttigh, B. and Wang, B. (2005). Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coastal Engineering, 52(10), 915-929. https://doi.org/10.1016/j.coastaleng.2005.09.005
  29. Vicinanza, D., Caceres, I., Buccino, M., Gironella, X. and Calabrese, M. (2009). Wave disturbance behind low-crested structures: Diffraction and overtopping effects. Coastal Engineering, 56(11), 1173-1185. https://doi.org/10.1016/j.coastaleng.2009.08.002

피인용 문헌

  1. Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation vol.29, pp.6, 2017, https://doi.org/10.9765/KSCOE.2017.29.6.399
  2. 3D Numerical Simulation of Water Surface Variations and Velocity Fields around Permeable Submerged Breakwaters under Irregular Waves vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.153
  3. Numerical Simulation of Three-Dimensional Wave-Current Interactions Due to Permeable Submerged Breakwaters by Using olaFLOW vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.166