DOI QR코드

DOI QR Code

The Effect of HiPIMS Conditions on Microstructure of Carbon Thin Film

카본 박막의 미세조직에 미치는 HiPIMS 공정조건의 영향

  • Yang, Jae Woong (Department of Advanced Materials Science & Engineering, Daejin University)
  • Received : 2017.11.19
  • Accepted : 2017.12.11
  • Published : 2017.12.30

Abstract

Carbon thin films were deposited by HiPIMS(High Power Impulse Magnetron Sputtering). The properties and microstructures of carbon thin film were investigated with power, pressure, bias voltage and duty cycle. As the HiPIMS power increased, the deposition thickness increased and the surface tended to be rough. The increase in pressure also tended to make the surface rough, but the deposition thickness was not proportional to the pressure. As the bias voltage increased, the surface roughness became worse, the deposition thickness increased and then decreased from the critical bias voltage. Changes in the duty cycle have caused problems such as arcing, which is affected by the chamber structure and the size of the target. The $sp^2/sp^3$ fractions of thin films were estimated by XPS and it was confirmed that the fraction of thin films made by HiPIMS were larger than the fraction of thin films made by DC sputtering.

HiPIMS(High Power Impulse Magnetron Sputtering)를 이용하여 탄소 박막을 증착하였다. 파워, 압력, 바이어스 전압, duty cycle에 따른 탄소 박막의 특성과 미세조직을 조사하였다. HiPIMS 파워가 증가할수록 증착 두께는 증가하였으며 표면이 거칠어지는 경향을 보였다. 압력의 증가 또한 표면이 거칠어지는 경향을 보였으나 증착 두께는 압력에 비례하지 않았다. 바이어스 전압이 증가함에 따라 조도가 나빠졌고 증착 두께는 증가하다가 임계 바이어스 전압부터는 감소하는 경향을 보였다. 듀티 사이클의 변화는 아크 발생과 같은 문제를 유발했으며 이는 챔버 구조나 타겟의 크기 등에 영향을 받는다. XPS로 $sp^2/sp^3$ 분율을 확인하였으며 $sp^2/sp^3$ 분율이 DC 스퍼터링의 경우보다 HiPIMS의 경우가 더 큰 것을 확인하였다.

Keywords

References

  1. J. Robertson, "Diamond-like amorphous carbon", Mater. Sci. Eng. Rep., Vol.37, pp.129-138, (2002). https://doi.org/10.1016/S0927-796X(02)00005-0
  2. T. Zaharia, P. Kudlacek, M. Creatore, R. Groenen, P. Persoone, M.C.M. van deSanden, "Improved adhesion and tribological properties of fast-deposited hard graphite-like hydrogenated amorphous carbon films", Diamond and Related Materials, Vol.20, pp.1266-1272, (2011). https://doi.org/10.1016/j.diamond.2011.08.003
  3. G.A.J. Amaratunga, M. Chhowalla, C.J. Kiely, I. Alexandrou, R. Aharonov, R.M. Devenish, "Hard elastic carbon thin films from linking of carbon nano particles", Nature, Vol.383, pp.321-326, (1996). https://doi.org/10.1038/383321a0
  4. Y.S. Park, H.S. Myung, J.G. Han, B. Hong, "The electrical and structural properties of the hydrogenated amorphous carbon films grown by close field unbalanced magnetron sputtering", Thin Solid Films, Vol.482, pp.275-282, (2005). https://doi.org/10.1016/j.tsf.2004.11.160
  5. H.X. Li, T. Xu, J.M. Chen, H.D. Zhou, H.W. Liu, "The effect of applied dc bias voltage on the properties of aC: H films prepared in a dual dc-rf plasma system", Applied Surface Science, Vol.227, pp.364-370, (2004). https://doi.org/10.1016/j.apsusc.2003.12.013
  6. M. Rybachuk, J.M. Bell, "The effect of sp2 fraction and bonding disorder on micro-mechanical and electronic properties of aC: H films", Thin Solid Films, Vol,515, pp.7855-7861, (2007). https://doi.org/10.1016/j.tsf.2007.04.040
  7. R. Olivares, S.E. Rodil, H. Arzate, "Osteo-induction properties of graphite-like amorphous carbon films evaluated in-vitro", Diamond and Related Materials, Vol.16, pp.1858-1865, (2007). https://doi.org/10.1016/j.diamond.2007.08.022
  8. Meidong Huang, Xuequian Zhang, Peiling Ke, Aiying Wang, "Graphite-like carbon films by high power impulse magnetron sputtering", Applied Surface Science, Vol.283, pp.321-328, (2013). https://doi.org/10.1016/j.apsusc.2013.06.109