DOI QR코드

DOI QR Code

Functional and Proteomic Analyses Reveal That ScpBXv Is Involved in Bacterial Growth, Virulence, and Biofilm Formation in Xanthomonas campestris pv. vesicatoria

  • Park, Hye-Jee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Han, Sang-Wook (Department of Integrative Plant Science, Chung-Ang University)
  • Received : 2017.07.13
  • Accepted : 2017.07.26
  • Published : 2017.12.01

Abstract

Segregation and condensation protein B (ScpB) is essential for replication and segregation in living organisms. Here, we reported the functions of ScpBXv (ScpB-like protein in Xanthomonas campestris pv. vesicatoria) using phenotypic and proteomic analyses. Growth of $Xcv{\Delta}scpBXv$ (ScpBXv knockout mutant) was reduced under both slow and fast growth conditions in rich medium, but comparable to this of the wild-type in plant-mimic conditions. Interestingly, the mutant was significantly less virulent than the wild-type in tomato, indicating that ScpBXv is involved in virulence. To investigate ScpBXv-associated mechanisms, comparative proteomic analyses were carried out and the abundance of 187 proteins was altered. Among them, diverse transcriptional regulators involved in biofilm formation and virulence were abundant in the wild-type. We further showed that biofilm formation of $Xcv{\Delta}scpBXv$ was reduced. This study provides new insights into the functions of ScpBXv in bacterial replication and biofilm formation, which may contribute to the virulence of Xcv.

Keywords

References

  1. Aguilar, C., Schmid, N., Lardi, M., Pessi, G. and Eberl, L. 2014. The IclR-family regulator BapR controls biofilm formation in B. cenocepacia H111. PLos One 9:e92920. https://doi.org/10.1371/journal.pone.0092920
  2. Choi, H., Fermin, D. and Nesvizhskii, A. I. 2008. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell Proteomics 7:2373-2385. https://doi.org/10.1074/mcp.M800203-MCP200
  3. Dervyn, E., Noirot-Gros, M. F., Mervelet, P., McGovern, S., Ehrlich, S. D., Polard, P. and Noirot, P. 2004. The bacterial condensin/cohesin-like protein complex acts in DNA repair and regulation of gene expression. Mol. Microbiol. 51:1629-1640. https://doi.org/10.1111/j.1365-2958.2003.03951.x
  4. Di Pasquale, P., Caterino, M., Di Somma, A., Squillace, M., Rossi, E., Landini, P., Palamara, A. T. and Duilio, A. 2016. Exposure of E. coli to DNA-methylating agents impairs Biofilm formation and invasion of eukaryotic cells via down regulation of the N-acetylneuraminate lyase nanA. Front. Microbiol. 7:147.
  5. Gry, M., Rimini, R., Stromberg, S., Asplund, A., Ponten, F., Uhlen, M. and Nilsson, P. 2009. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10:365. https://doi.org/10.1186/1471-2164-10-365
  6. Ham, J. H. 2013. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. Mol. Plant Pathol. 14:308-322. https://doi.org/10.1111/mpp.12005
  7. Hirano, T. 2006. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7:311-322.
  8. Kim, J. G., Stork, W. and Mudgett, M. B. 2013. Xanthomonas type III effector xopd desumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe 13:143-154. https://doi.org/10.1016/j.chom.2013.01.006
  9. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., 2nd and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176. https://doi.org/10.1016/0378-1119(95)00584-1
  10. Mao, D. N., Bushin, L. B., Moon, K., Wu, Y. H. and Seyedsayamdost, M. R. 2017. Discovery of scmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264. Proc. Natl. Acad. Sci. U.S.A. 114:E2920-E2928. https://doi.org/10.1073/pnas.1619529114
  11. Murray, E. J., Kiley, T. B. and Stanley-Wall, N. R. 2009. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology 155:1-8. https://doi.org/10.1099/mic.0.023903-0
  12. Park, H. J., Jung, H. W. and Han, S. W. 2014a. Functional and proteomic analyses reveal that wxcB is involved in virulence, motility, detergent tolerance, and biofilm formation in Xanthomonas campestris pv. vesicatoria. Biochem. Biophys. Res. Commun. 452:389-394. https://doi.org/10.1016/j.bbrc.2014.08.076
  13. Park, H. J., Lee, S. W. and Han, S. W. 2014b. Proteomic and functional analyses of a novel porin-like protein in Xanthomonas oryzae pv. oryzae. J. Microbiol. 52:1030-1035. https://doi.org/10.1007/s12275-014-4442-0
  14. Park, H. J., Park, C. J., Bae, N. and Han, S. W. 2016. Deciphering the role of tyrosine sulfation in Xanthomonas oryzae pv. oryzae using shotgun proteomic analysis. Plant Pathol. J. 32:266-272. https://doi.org/10.5423/PPJ.NT.12.2015.0273
  15. Ryan, R. P., Vorholter, F. J., Potnis, N., Jones, J. B., Van Sluys, M. A., Bogdanove, A. J. and Dow, J. M. 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9:344-355. https://doi.org/10.1038/nrmicro2558
  16. Sadykov, M. R., Hartmann, T., Mattes, T. A., Hiatt, M., Jann, N. J., Zhu, Y., Ledala, N., Landmann, R., Herrmann, M., Rohde, H., Bischoff, M. and Somerville, G. A. 2011. CcpA coordinates central metabolism and biofilm formation in staphylococcus epidermidis. Microbiology 157:3458-3468. https://doi.org/10.1099/mic.0.051243-0
  17. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.
  18. Seong, H. J., Park, H. J., Hong, E., Lee, S. C., Sul, W. J. and Han, S. W. 2016. Methylome analysis of two Xanthomonas spp. using single-molecule real-time sequencing. Plant Pathol. J. 32:500-507. https://doi.org/10.5423/PPJ.FT.10.2016.0216
  19. Soppa, J., Kobayashi, K., Noirot-Gros, M. F., Oesterhelt, D., Ehrlich, S. D., Dervyn, E., Ogasawara, N. and Moriya, S. 2002. Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB. Mol. Microbiol. 45:59-71. https://doi.org/10.1046/j.1365-2958.2002.03012.x
  20. Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36. https://doi.org/10.1093/nar/28.1.33
  21. Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Buttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., McHardy, A. C., Meyer, F., Mittenhuber, G., Nies, D. H., Niesbach-Klosgen, U., Patschkowski, T., Ruckert, C., Rupp, O., Schneiker, S., Schuster, S. C., Vorholter, F. J., Weber, E., Puhler, A., Bonas, U., Bartels, D. and Kaiser, O. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187:7254-7266. https://doi.org/10.1128/JB.187.21.7254-7266.2005
  22. Torres, P. S., Malamud, F., Rigano, L. A., Russo, D. M., Marano, M. R., Castagnaro, A. P., Zorreguieta, A., Bouarab, K., Dow, J. M. and Vojnov, A. A. 2007. Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ. Microbiol. 9:2101-2109. https://doi.org/10.1111/j.1462-2920.2007.01332.x
  23. Vauterin, L., Hoste, B., Kersters, K. and Swings, J. 1995. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 45:472-489. https://doi.org/10.1099/00207713-45-3-472
  24. Wang, X. D., Tang, O. W., Riley, E. P. and Rudner, D. Z. 2014. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 24:287-292. https://doi.org/10.1016/j.cub.2013.11.050
  25. Wengelnik, K. and Bonas, U. 1996. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 178:3462-3469. https://doi.org/10.1128/jb.178.12.3462-3469.1996
  26. Wengelnik, K., Marie, C., Russel, M. and Bonas, U. 1996a. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction. J. Bacteriol. 178:1061-1069. https://doi.org/10.1128/jb.178.4.1061-1069.1996
  27. Wengelnik, K., Van den Ackerveken, G. and Bonas, U. 1996b. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol. Plant-Microbe Interact. 9:704-712. https://doi.org/10.1094/MPMI-9-0704