DOI QR코드

DOI QR Code

Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa

  • Dangol, Sarmina (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Singh, Raksha (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Chen, Yafei (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University) ;
  • Jwa, Nam-Soo (Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University)
  • Received : 2017.03.21
  • Accepted : 2017.09.27
  • Published : 2017.11.30

Abstract

Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the subcellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

Keywords

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802-805. https://doi.org/10.1126/science.8303295
  2. Collings, D.A. (2013). Subcellular localization of transiently expressed fluorescent fusion proteins. Methods Mol. Biol. 1069, 227-258.
  3. Cutler, S.R., Ehrhardt, D.W., Griffitts, J.S., and Somerville, C.R. (2000). Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97, 3718-3723. https://doi.org/10.1073/pnas.97.7.3718
  4. Day, R.N., and Davidson, M.W. (2009). The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887-2921. https://doi.org/10.1039/b901966a
  5. Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-900. https://doi.org/10.1038/nrm2275
  6. Dunkley, T.P., Hester, S., Shadforth, I.P., Runions, J., Weimar, T., Hanton, S.L., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., et al. (2006). Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA 103, 6518-6523. https://doi.org/10.1073/pnas.0506958103
  7. Fang, R.X., Nagy, F., Sivasubramaniam, S., and Chua, N.H. (1989). Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1, 141-50. https://doi.org/10.1105/tpc.1.1.141
  8. Henriques, M.X., Catalao, M.J., Fi gueiredo, J., Gomes, J.P., and Filipe, S.R. (2013). Construction of improved tools for protein localization studies in Streptococcus pneumoniae. PLoS One 8, e55049. https://doi.org/10.1371/journal.pone.0055049
  9. Hezlewoaod, J.L., Tonti-Filippini, J.S., Gout, A.M., Day, D.A., Whelan, J., and Millar, A.H. (2004). Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16, 241-256. https://doi.org/10.1105/tpc.016055
  10. Jauh, G.Y., Phillips, T.E., and Rogers, J.C. (1999). Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11, 1867-1882. https://doi.org/10.1105/tpc.11.10.1867
  11. Kalderon, D., Roberts, B.L., Richardson, W.D., and Smith, A.E. (1984). A short amino acid sequence able to specify nuclear location. Cell 39, 499-509. https://doi.org/10.1016/0092-8674(84)90457-4
  12. Krause, K., Kilbienski, I., Mulisch, M., Rodiger, A., Schafer, A., and Krupinska, K. (2005). DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Lett. 17, 3707-3712.
  13. Komatsu, S., Konishi, H., and Hashimoto, M. (2007). The proteomics of plant cell membranes. J. Exp. Bot. 58, 103-112.
  14. Li, S., Ehrhardt, D.W., and Rhee, S.Y. (2006). Systematic analysis of Arabidopsis organelles and a protein localization database for facilitating fluorescent tagging of full-length Arabidopsis proteins. Plant Physiol. 141, 527-539. https://doi.org/10.1104/pp.106.078881
  15. Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.T., Maurel, C., and Lin. J. (2011). Single-molecule analysis of PIP2.1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23, 3780-3797. https://doi.org/10.1105/tpc.111.091454
  16. Lilley, K.S., and Dupree, P. (2006). Methods of quantitative proteomics and their application to plant organelle characterization. J. Exp. Bot. 57, 11493-11499.
  17. Lunn, J.E. (2007). Compartmentation in plant metabolism. J. Exp. Bot. 58, 35-47.
  18. Luo, B., and Nakata, P.A. (2012). A set of GFP organelle marker lines for intracellular localization studies in Medicago truncatula. Plant Sci. 188-189, 19-24. https://doi.org/10.1016/j.plantsci.2012.02.006
  19. Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L., and Lukyanov, S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969-973. https://doi.org/10.1038/13657
  20. Moog, D., Stork, S., Reislohner, S., Grosche, C., and Maier, U.G. (2015). In vivo localization studies in the stramenopile alga Nannochloropsis oceanica. Protist 166, 161-171. https://doi.org/10.1016/j.protis.2015.01.003
  21. Muench, D.G., and Mullen, R.T. (2003). Peroxisome dynamics in plant cells: a role for the cytoskeleton. Plant Sci. 64, 307-315.
  22. Nakagawa, T., Suzuki, T., murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., Niwa, Y., et al. (2007). Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095-2100. https://doi.org/10.1271/bbb.70216
  23. Nakazono, M., Tsuji, H., Li, Y., Saisho, D., Arimura, S., Tsutsumi, N., and Hirai, A. (2000). Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol. 124, 587-598. https://doi.org/10.1104/pp.124.2.587
  24. Nelson, B.K., Cai, X., and Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136. https://doi.org/10.1111/j.1365-313X.2007.03212.x
  25. O'Rourke, N.A., Meyer, T., and Chandy, G. (2005). Protein localization studies in the age of 'Omics'. Curr. Opin. Chem. Biol. 9, 82-87. https://doi.org/10.1016/j.cbpa.2004.12.002
  26. Richly, E., and Leister, D. (2004). An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329, 11-16. https://doi.org/10.1016/j.gene.2004.01.008
  27. Saint-Jore-Dupas, C., Nebenfuhr, A., Boulaflous, A., Follet-Gueye, M.L., Plasson, C., Hawes, C., Driouich, A., Faye, L., and Gomord, V. (2006). Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18, 3182-3200. https://doi.org/10.1105/tpc.105.036400
  28. Saito, C., Ueda, T., Abe, H., Wada, Y., Kuroiwa, T., Hisada, A., Furuya, M., and Nakano, A. (2002). A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis. Plant J. 29, 245-255. https://doi.org/10.1046/j.0960-7412.2001.01189.x
  29. Singh, R., Lee, J.E., Dangol, S., Choi, J., Yoo, R.H., Moon, J.S., Shim, J.K., Rakwal, R., Agrawal, G.K., and Jwa, N.S. (2014). Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system. Proteomics 14, 105-115. https://doi.org/10.1002/pmic.201300125
  30. Singh, R., Lee, M.O., Lee, J.E., Choi, J., Park, J.H., Kim, E.H., Yoo, R.H., Cho, J.I., Jeon, J.S., Rakwal, R., et al. (2012). Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiol. 160, 477-487. https://doi.org/10.1104/pp.112.200071
  31. Stadler, C., Rexhepaj, E., Singan, V.R., Murphy, R.F., Pepperkok, R., Uhlen, M., Simpson, J.C., and Lundberg, E. (2013). Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10, 315-323. https://doi.org/10.1038/nmeth.2377
  32. Tamura, T., Kuroda, M., Oikawa, T., Kyozuka, J., Terauchi, K., Ishimaru, Y., Abe, K., and Asakura, T. (2009). Signal peptide peptidases are expressed in the shoot apex of rice, localized to the endoplasmic reticulum. Plant Cell Rep. 28, 1615-1621. https://doi.org/10.1007/s00299-009-0760-9
  33. Tanz SK, Castleden I, Small ID, Millar AH. (2013). Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Front. Plant Sci. 4, 214.
  34. Teixeira, F.K., Menezes-Benavente, L., Galvao, V.C., Margis, R., and Margis-Pinheiro, M. (2006). Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224, 300-314. https://doi.org/10.1007/s00425-005-0214-8
  35. Tobin, A.K., and Yamaya, T. (2001). Cellular compartmentation of ammonium assimilation in rice and barley. J. Exp. Bot. 52, 591-594. https://doi.org/10.1093/jexbot/52.356.591
  36. Wang, Y., Wu, J., Kim, S.G., Kim, S.T., and Kang, K.Y. (2013). A transient gene expression protocol for subcellular protein localization and protein secretion analyses in rice. Protocol. Exch. 064.
  37. Weaver, L.M., Froehlich, J.E., and Amasino, R.M. (1999). Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. Plant Physiol. 119, 1209-1216. https://doi.org/10.1104/pp.119.4.1209
  38. Wu, Q., Luo, A., Zadrozny, T., Sylvester, A., and Jackson, D. (2013). Fluorescent protein marker lines in maize: generation and applications. Int. J. Dev. Biol. 57, 535-543. https://doi.org/10.1387/ijdb.130240qw
  39. Wu, T.M., Lin, K.C., Liau, W.S., Chao, Y.Y., Yang, L.H., Chen, S.Y., Lu, C.A., and Hong, C.Y. (2016). A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.). Plant Mol. Biol. 90, 107-115. https://doi.org/10.1007/s11103-015-0397-8
  40. Xia, J., Yamaji, N., and Ma, J.F. (2013). A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J. 76, 345-355.
  41. Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J., Wang, P., Li, Y., Liu, B., Feng, D., et al. (2011). A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30. https://doi.org/10.1186/1746-4811-7-30

Cited by

  1. Protein trafficking in plant cells: Tools and markers vol.63, pp.3, 2017, https://doi.org/10.1007/s11427-019-9598-3
  2. A Silent Exonic Mutation in a Rice Integrin-α FG-GAP Repeat-Containing Gene Causes Male-Sterility by Affecting mRNA Splicing vol.21, pp.6, 2017, https://doi.org/10.3390/ijms21062018
  3. Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice-Magnaporthe oryzae Interactions vol.12, pp.None, 2017, https://doi.org/10.3389/fpls.2021.710794
  4. Caught in the Act: Live-Cell Imaging of Plant Meiosis vol.12, pp.None, 2017, https://doi.org/10.3389/fpls.2021.718346
  5. A Novel, Small Cysteine-Rich Effector, RsSCR10 in Rhizoctonia solani Is Sufficient to Trigger Plant Cell Death vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.684923
  6. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation vol.148, pp.6, 2021, https://doi.org/10.1242/dev.196378
  7. Plastidial Expression of 3β-Hydroxysteroid Dehydrogenase and Progesterone 5β-Reductase Genes Confer Enhanced Salt Tolerance in Tobacco vol.22, pp.21, 2017, https://doi.org/10.3390/ijms222111736