DOI QR코드

DOI QR Code

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode

은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성

  • Jung, Sunghoon (Plasma Processing Technology Department, Korea Institute of Materials Science) ;
  • Lee, Seunghun (Plasma Processing Technology Department, Korea Institute of Materials Science) ;
  • Kim, Do-Geun (Plasma Processing Technology Department, Korea Institute of Materials Science)
  • 정성훈 (재료연구소 표면기술연구본부 플라즈마공정연구실) ;
  • 이승훈 (재료연구소 표면기술연구본부 플라즈마공정연구실) ;
  • 김도근 (재료연구소 표면기술연구본부 플라즈마공정연구실)
  • Received : 2017.12.08
  • Accepted : 2017.12.22
  • Published : 2017.12.31

Abstract

Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Keywords

References

  1. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios, ACS Nano, 3 (2009) 1767-1744. https://doi.org/10.1021/nn900348c
  2. M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. -H. Kim, D. -G. Kim, J. -K. Kim, J. Park, Y. -C. Kang, J. Heo, S. -H. Jin, J. H. Park, J. -W. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes, Adv. Funct. Mater., 23 (2013) 4177-4184. https://doi.org/10.1002/adfm.201202646
  3. S. Nam, M. Song, D. -H. Kim, B. Cho, H. M. Lee, J. -D. Kwon, S. -G. Park, K.-S. Nam, Y. Jeong, S. -H. Kwon, Y. C. Park, S. -H. Jin, J. W. Kang, S. Jo, C. S. Kim, Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode, Scientific Reports, (2014) doi:10.1038/srep04788.
  4. T. -B. Song, Y. S. Rim, F. Liu, B. Bob, S. Ye, Y. -T. Hsieh, Y. Yang, Highly robust silver nanowire network for transparent electrode, ACS Appl. Mater. Interfaces, 7 (2015) 24601-24607. https://doi.org/10.1021/acsami.5b06540
  5. S. Jung, W. Ahn, D. -G. Kim, Development of AgNW/reduced graphene oxide hybrid transparent electrode with long-term stability using plasma reduction, J. Kor. Inst. Surf. Eng., 49 (2016) 87-91. https://doi.org/10.5695/JKISE.2016.49.1.87
  6. K. Pyo, J. -W. Kim, Thermally stable and flexible transparent heaters based on silver nanowirecolorless polyimide composite electrode, Curr. Appl. Phys., 16 (2016) 1453-1458. https://doi.org/10.1016/j.cap.2016.08.011
  7. C. Hengst, S. B. Menzel, G. K. Rane, V. Smirnov, K. Wilken, B. Leszczynska, D. Fischer, N. Prager, Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells, Materials, 10 (2017) doi:10.3390/ma10030245.
  8. M. Jlassi, I. Sta, M. Hajji, H. Ezzaouia, NiO thin films synthesized by sol-gel: Potentiality for the realization of antireflection layer for silicon based solar cell applications, Surfaces and Interfaces, 6 (2017) 218-222. https://doi.org/10.1016/j.surfin.2016.10.006
  9. S. Lee, E.-Y. Byun, J.-K. Kim, D.-G. Kim, Ar and $O_2$ linear ion beam PET treatments using an anode layer ion source. Curr. Appl. Phys., 14 (2014) S180-S182. https://doi.org/10.1016/j.cap.2013.12.031
  10. S. Lee, J.-K. Kim, D.-G. Kim, Effects of electrode geometry on the ion beam extraction of closed drift type anode layer linear ion source, Rev. Sci. Instrum., 83 (2012) 02B703-1-02B703-3. https://doi.org/10.1063/1.3665961