DOI QR코드

DOI QR Code

The fabrication of a coaxial line impedance transformer with low transmission loss and wideband operation range

저손실 광대역 동작 특성을 가지는 동축 선로 임피던스 변환기 제작

  • Park, Ung-hee (Division of Electronics, Information & Communication Engineering, Kangwon University)
  • Received : 2017.07.24
  • Accepted : 2017.08.12
  • Published : 2017.12.31

Abstract

The coaxial line impedance transformer that performs impedance conversion using the coupling of two or more coaxial lines of the same length is often used for impedance matching in the low frequency region due to many advantages. This paper measures the phase and magnitude characteristics of each coaxial line in a 4:1 coaxial line impedance transformer using two 100mm coaxial lines. This experiment shows that it is more effective to make the length of the auxiliary coaxial line shorter than the main coaxial line by about 5 mm in order to realize a low loss impedance transformer. In addition, it measures the transmission characteristics by directly connecting a 4:1 impedance transformer and a 1:4 impedance transformer. This experiment shows that it is effective to connect a 1pF capacitor between the ground and the outer conductor input point of the main coaxial line in order to increase the operating frequency range.

동축 선로 임피던스 변환기는 동일 길이의 두 개 또는 그 이상의 동축 선로 결합을 이용하여 임피던스 변환을 만드는 회로로서 높은 동작 전력, 광대역 동작 특성, 쉬운 제작 등 다양한 장점에 의해 상대적으로 낮은 주파수 영역의 임피던스 정합을 위해 자주 사용된다. 본 논문에서는 두 개의 100mm 동축 선로를 이용한 4:1 임피던스 변환기를 사용하여 동축 선로의 위상 및 세기 특성을 측정하였다. 이를 통해 보조 동축 선로의 길이가 주 동축 선로보다 약 5mm 짧게 하는 것이 보다 저손실의 동축 선로 임피던스 변환기 구현에 효과적임을 알 수 있었다. 또한 4:1 임피던스 변환기와 1:4 임피던스 변환기를 직접 연결하여 측정한 동축 선로 임피던스 변환기의 전달 특성 실험을 통해 접지면과 주 동축선로 외곽 도체 입력부에 약 1pF 캐페시터를 연결하는 것이 보다 광대역 동작 범위 및 대역 내 특성 개선에 도움이 됨을 알 수 있었다.

Keywords

References

  1. T. C. Chen, X. Yu, and H. Xin, "A compact planar power combiner with complex impedance matching," Microwave and optical technology letters, vol. 58, no. 5, pp. 1121-1125, March 2016. https://doi.org/10.1002/mop.29752
  2. I. Jongsuebchoke, P. Akkaraekthalin, and D. Torrungrueng, "Theory and design of quarter-wave-like transformers implemented using conjugately characteristic-impedance transmission lines," Microwave and optical technology letters, vol. 58, no. 11, pp. 2614-2619, Aug. 2016. https://doi.org/10.1002/mop.30120
  3. E. Wadbro, "Analysis and design of acoustic transition sections for impedance matching and mode conversion," Structural and Multidisciplinary Optimization, vol. 50, no. 3, pp. 395-408, Sep. 2014. https://doi.org/10.1007/s00158-014-1058-2
  4. K. A. Lee, and K. C. Ko, "Lumed-element model of a tapered transmission line for impedance matching in a pulsed power system," Journal of the Korean Physical Society, vol. 69, no. 2, pp. 131-136, July 2016. https://doi.org/10.3938/jkps.69.131
  5. J. Moon and Y. Lim, "Performance Evaluation of Resource Management Mechanisms in LTE-Advanced Networks," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol.6, no.1, pp. 9-18, Jan. 2016.
  6. E. H. Kwak, and B. G. Kim, "Enhancement for a Proximity Coupled Microstrip patch Antenna with an Impedance Matching Network," Journal of the Institude of Electronics and Information Engineers, vol. 52, no. 2, pp. 55-69, Feb. 2015.
  7. U. H. Park, " Wideband Impedance Transformer Using a Coaxial Cable," Journal of Korea Institute of Information and Communication Engineering, vol. 15, no.4, pp. 789-794, April 2011. https://doi.org/10.6109/jkiice.2011.15.4.789
  8. J. Sevick, Transmission Line Transformer, 2nd ed. Newington, CT: The American Radio Relay League, 1990.
  9. F. Centurelli, L. Piattella, P. Tommasino, and A. Trifiletti, "A novel topology of Broad-band Coaxial impedance transformer," in Proceedings of the 40th European Microwave Conference, Paris: France, pp. 357-360, 2010.
  10. U. H. Park, "Control Circuit Compensates Error Loop In Feedforward Amplifiers," MICROWAVE&RF, pp. 120-130, Sep. 2000.
  11. A. Grebennikov, N. Kumar, and B. S. Yarman, "Transmission-Line Transformers and Combiners" in Power Amplifier Design Principles: Broadband RF and Microwave Amplifiers, Boca Raton, FL: CRC Press, Taylor & Francis Group, ch. 2, pp. 92-103, 2016.