DOI QR코드

DOI QR Code

국내산 굴 패각의 광물학적 화학적 특성

Mineralogical and Chemical Characteristics of the Oyster Shells from Korea

  • 하수현 (경북대학교 지구시스템과학부) ;
  • 차민경 (경북대학교 지구시스템과학부) ;
  • 김강주 (군산대학교 환경공학과) ;
  • 김석휘 (고등기술연구원, 플랜트 엔지니어링 센터) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Ha, Su Hyeon (School of Earth System Sciences, Kyungpook National University) ;
  • Cha, Min Kyung (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Kangjoo (Department of Environmental Engineering, Kunsan National University) ;
  • Kim, Seok-Hwi (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 투고 : 2017.10.12
  • 심사 : 2017.12.18
  • 발행 : 2017.12.30

초록

$SO_2$ 가스 반응제로 사용되는 석회석의 대체 가능 물질로서 굴 패각의 광물학적 화학적 특성을 알아보았다. 생장환경에 따른 굴 패각의 특성을 파악하기 위하여 태안지역 및 통영지역의 굴 패각을 석회석과 비교하였고 추가로 보령 및 여수 지역의 굴 패각을 연구하였다. XRD 분석 결과 굴 패각은 아라고나이트로 구성되어 있는 폐각근 접합 부분 및 인대(ligament) 접합부분을 제외하고 방해석으로 구성되어 있으며 불순물로서 나타나는 해양 퇴적물이 패각 내 표면에 존재하거나 일부 패각 내 포유물 형태로 나타나기도 했다. 불순물 중 하나인 패각 표면의 따개비의 경우도 방해석으로 이루어져 있어 소성에 영향을 주지는 않을 것으로 판단된다. 현미경 관찰을 통하여 굴 패각의 미세구조를 파악할 수 있었다. 패각은 크게 각주층, 진주층, 초크층으로 구성되어 있는데 패각이 가장 큰 통영 굴 패각은 콘키올린(conchiolin)이라 불리는 단백질을 일부 함유하는 각주층과 진주층의 두께가 가장 작았으며 작은 크기의 태안 굴 패각의 경우 각주층과 진주층 두께가 가장 두꺼운 것으로 나타났다. 중간 크기의 패각 크기를 갖는 보령과 여수 굴 패각은 그 층들이 두 패각의 중간정도의 두께를 보여주었다. 이는 계속 바닷물 속에서 양식하는 통영과 조간대에서 공기와 바닷물 속에서 양식하는 태안의 생장 환경 차이로 판단된다. 굴 패각들은 석회석과 달리 상대적으로 높은 인과 황 함량을 보여주는데 이는 패각 내의 단백질에 의한 것이며 패각을 구성하고 있는 세 개의 층은 Mg 함량을 포함하여 일부 상이한 화학성분을 갖고 있기도 했다. 미량성분의 경우 패각의 경우 석회석 보다 Li의 함량이 상대적으로 많았으며 이는 바닷물 성분의 영향을 받았을 것으로 생각된다. 각 산지별 패각에서는 Zn의 함량 변화가 가장 커서 Zn의 함량은 생성환경에 가장 영향을 많이 받는 미량원소로 판단된다.

We investigated the mineralogical and chemical characteristics of oyster shell as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. The oyster shells from Taean and Tongyeong were used for the comparison with limestone and those from Boyreong and Yeosu were additionally investigated. XRD results show that all shells are composed of calcite with the exception of the myostracum layer attached to adductor muscle and ligament, which is composed of aragonite. The marine sediments as impurities exist on the surface of shells or as inclusions in the shells. Calcite is the main mineral composition of the shell of barnacle which is also one of the impurities. The oyster shell is composed of three main layers; prismatic, foliated, and chalk. The oyster shell from Tongyeong with the largest shell size, has the smallest thickness of prismatic and foliated layers which contain protein called conchiolin, whereas that from Taean with the smallest shell size has the largest prismatic and foliated layers. The sizes of those two layers of the shells from Boryeong and Yeosu are larger than that from Tongyeong but smaller than Taean. Those differences are supposed to be due to the different growth environments because the oysters from Tongyeong are cultured under the sea while those from Taean are in the tidal zone. The oyster shells generally show higher amount of sulfur and phosphorus than limestone, mainly due to the composition of protein. Some elements such as Mg show significant variations in different layers. As for trace elements, Li shows much higher amount in oyster shells than limestone, suggesting the influence of the composition of the sea water on the formation of the oyster shells.

키워드

참고문헌

  1. Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., and Watanabe, M. (2015) Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmental Management, 150, 103-110.
  2. Almeida, M.J., Machado, J., Moura, G., Azevedo, M., and Coimbra, J. (1998) Temporal and local variations in biochemical composition of Crassostrea gigas shells. Journal of Sea Research, 40, 233-249. https://doi.org/10.1016/S1385-1101(98)00033-1
  3. Anthony, E.J. and Granatstein, D.L. (2001) Sulfation phenomena in fluidized bed combustion systems. Progress in Energy and Combustion Science, 27, 215-236. https://doi.org/10.1016/S0360-1285(00)00021-6
  4. Barbin, V., Ramseyer, K., and Elfman, M. (2008) Biological record of added manganese in sewater: a new efficient tool to mark in vivo growth lines in the oyster species Crassostrea gigas. International Journal of Earth Sciences, 97, 193-199. https://doi.org/10.1007/s00531-006-0160-0
  5. Brown, J. R. and Hartwick, E. B. (1988) Influences of temperature, salinity and available food upon suspended culture of the Pacific oyster, Crassostrea gigas. Absolute and allometric growth. Aquaculture, 70, 231-251. https://doi.org/10.1016/0044-8486(88)90099-3
  6. Chen, J., Yao, H., and Zhang, L. (2012) A study on the calcination and sulphation behaviour of limestone during oxy-fuel combustion. Fuel, 102, 386-395. https://doi.org/10.1016/j.fuel.2012.05.056
  7. Garcia-Labiano, F., Rufas, A., de Diego, L.F., de las Obras-Loscertales, M., Gayan P., Abad, A., and Adanez, J. (2011) Calcium-based sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions. Fuel, 90, 3100-3108. https://doi.org/10.1016/j.fuel.2011.05.001
  8. Carter, J.G. (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads, D.C., Lutz, R.A., Skeletal Growth of Aquatic Organisms. Plenum Press, New York, 69-113.
  9. Carter, J.G. and Clark II, G.R. (1985) Classification andphylogenetic significance ofmolluscan shell microstructure. In: Bottjer, D.J., Hickman, C.S., Ward, P.D., Broadhead, T.W., Molluscs, Notes for a Short Course. University of Tenessee, 50-71.
  10. Carriker, M.R., Palmer, R.E., Sick, L.V., and Johnson, C.C. (1980) Interaction of mineral elements in sea water and shell of oyster (CRASSOSTREA VIRGINICA (Gremlin)) cultured in controlled and natural systems. Journal of Experimental Marine Biology and Ecology, 46, 279-296. https://doi.org/10.1016/0022-0981(80)90036-2
  11. Dauphin, Y., Ball, A.D., Castillo-Michel, H., Chevallard, C., Jean-Pierre Cuif, J.P., Farre, B., Pouvreau, P., and Salome, M. (2013) In situ distribution and characterization of the organic content of the oyster shell Crassostrea gigas (Mollusca, Bivalvia). Micron, 44, 373-383. https://doi.org/10.1016/j.micron.2012.09.002
  12. Dauphin, Y., Cuif, J.P., Doucet, J., Salome, J., Susini, J., and Willams, C.T. (2003) In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. Journal of Structural Biology, 142, 272-280. https://doi.org/10.1016/S1047-8477(03)00054-6
  13. Diancauze, D.F. (2000) Environmental Arcaeology; Principles and Practice. Cambridge University Press. p. 588.
  14. Higuera, R.R. and Elorza, J. (2009) Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): Anthropogenic and seasonal influences. Estuarine, Coastal and Shelf Science, 82, 201-212. https://doi.org/10.1016/j.ecss.2009.01.001
  15. Hur, Y,B,, Min, K.S., Kim, T.E., Lee, S.J., and Hur, S.B. (2008) Larvae growth and biochemical composition change of the Pacific oyster, Crassostrea gigas, larvae during artificial seed production. Journal of Aquaculture, 21, 203-212 (in Korean with English abstract).
  16. Khalifa, G.M., Weiner, S., and Addadi, L. (2011) Mineral and matrix components of the operculum and shell of the barnacle Balanus amphitrite: Calcite crystal growth in a hydrogel. Crystal Growth & Design, 5122-5130.
  17. Kim, Y.S. (1995) Filtering rate model of farming oyster, Crassostrea gigas with effect of water temperature and size. Korean Journal of Fisheries and Aquatic Sciences, 28, 589-598 (in Koran with English abstract).
  18. Lee, S.W. and Choi, C.S. (2007) The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. Micron, 38, 58-64. https://doi.org/10.1016/j.micron.2006.03.018
  19. Lee, S.W., Jang, Y.N., and Kim, J.C. (2011) Characteristics of the aragonite layer in adult oyster shells, Crassostrea gigas: Structural study of myostracum including the abductor muscle scar. Evidence-Based Complementary and Alternative Medicine, 2011, 1-10.
  20. Lim, H.J., Back, S.H., Lim, M.S., Choi, E.H., and Kim, S.K. (2012) Regional variations in Pacific oyster, Crassostrea gigas, growth and the number of larvae occurrence and spat settlement along the west coast, Korea. Korean Journal of Malacology, 28, 259-267 (in Korean with English abstract). https://doi.org/10.9710/kjm.2012.28.3.259
  21. Lyu, S.G., Park, N.K., Sur, G.S., and Lee, T.J. (2001) Influence of polymorphs of calcium carbonate on their reactivity with $H_2S$. Journal of Korean Industrial and Engineering Chemistry, 12, 174-180 (in Korean with English abstract).
  22. Mo, K.H., Park, Y.J., Jung, E.Y., Kim, Y.K., Jeong, C.H., and Han, K.N. (2012) Comparisons of growth and mortality of the tidal flat oyster Crassostrea gigas by the net bag rack culture system in two districts in western Korea. Korean Journal of Malacology, 28, 45-54 (in Korean with English abstract). https://doi.org/10.9710/kjm.2012.28.1.045
  23. Ok, Y.S., Oh, S.E., Ahmad, M., Hyun, S., Kim, K.R., Moon, D.H., Lee, S.S., Lim, K.J., Jeon, W.T., and Yang, J.E. (2010) Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental and Earth Sciences, 61, 1301-1308. https://doi.org/10.1007/s12665-010-0674-4
  24. Park. S.W., Kim. Y., Kim. J.H., Chung. S.W., and Han. K.N. (2013) Effect of environment factors on growth and mortality of cupped oyster, Crassostrea gigas, Korean Journal of Malacology, 29, 273-281 (in Korean with English abstract). https://doi.org/10.9710/kjm.2013.29.4.273
  25. Reid, D.G., Mason, M.J., Chan, B.K.K., and Duer, M.J. (2012) Characterization of the phosphatic mineral of the barnacle Ibla cumingi at atomic level by solid-state nuclear magnetic resonance: comparison with other phosphate biominerals. Journal of the Royal Society Interface, 9, 1510-1516. https://doi.org/10.1098/rsif.2011.0895
  26. Scala, F., Chirone, R., Meoni, P., Carcangju, G., Manca, M., Mulas, G., and Mulas, A. (2013) Fluidized bed desulfurization using lime obtained after slow calcination of limestone particles. Fuel, 114, 99-105. https://doi.org/10.1016/j.fuel.2012.11.072
  27. Shin, Y.K., Hur, Y.B., Myeing, J.I., and Lee, S. (2008) Effect of temperature and body size on oxygen consumption and ammonia excretion of Oyster, Crassostrea gigas. Journal of Malacology, 24, 261-267 (in Korean with English abstract).
  28. Stanmore, B.R. and Gilot, P. (2005) Review-calcination and carbonation of limestone during thermal cycling for $CO_2$ sequestration. Fuel Processing Technology, 86, 1707-1743. https://doi.org/10.1016/j.fuproc.2005.01.023
  29. Stenzel, H.B. (1963) Aragonite and calcite as constituents of adult oyster shells. Science, 142, 232-233. https://doi.org/10.1126/science.142.3589.232
  30. Ryu. H.J., Grace, J.R., and Lim, C,J. (2006) Simultaneous $CO_2$/$SO_2$ capture characteristics of three limestones in a fluidized-bed reactor. Energy & Fuels, 20, 1621-1628. https://doi.org/10.1021/ef050277q
  31. Trikkel, A. (2001) Estonian calcareous rocks and oil shale ash as sorbents for $SO_2$. PhD thesis, Tallinn Technical University.
  32. Yen, H.Y. and Li, J.Y. (2015) Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method. Journal of Environmental Management, 161, 344-349.
  33. Yoo, S. K. and Yoo, N. S. (1984) Studies on the Pen Shell Culture Development (I), Reproductive Ecology of Pen Shell in Yoja Bay. The Korean Societies of Fisheries and Aquatic Science, 17, 529-535 (in Korean with English abstract).

피인용 문헌

  1. 소성에 따른 굴패각의 광물학적 특성변화: 석회석과의 비교 연구 vol.51, pp.6, 2017, https://doi.org/10.9719/eeg.2018.51.6.485
  2. 모사 Spray Type 배연탈황설비를 이용한 소성패각 슬러리의 SO2 흡수능 평가: 석회석과의 비교연구 vol.52, pp.2, 2017, https://doi.org/10.9719/eeg.2019.52.2.119
  3. 전복패각을 침전법의 원료로 이용한 calcium phosphates의 합성 vol.30, pp.4, 2017, https://doi.org/10.6111/jkcgct.2020.30.4.143
  4. 소성된 굴패각의 액상소석회로의 전환 특성 vol.33, pp.3, 2017, https://doi.org/10.22807/kjmp.2020.33.3.185
  5. 김(Pyropia spp.) 3종 유리사상체의 패각 잠입에 대한 패각 종류, 광과 온도의 영향 vol.54, pp.1, 2017, https://doi.org/10.5657/kfas.2021.0023
  6. Decomposition of Waste Shells Using Multi-Complex Microorganisms vol.43, pp.8, 2017, https://doi.org/10.4491/ksee.2021.43.8.578