• Title/Summary/Keyword: Trioctahedral clay minerals

Search Result 5, Processing Time 0.023 seconds

A Geometrical Structural Model of 2:1 Trioctahedral Clay Minerals (2:1 삼팔면체 점토광물의 기하학적 구조모델)

  • 유재영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.90-98
    • /
    • 1991
  • This study introduces a new structural model of 1M 2:1 trioctahedral clay minerals or, more generally, 2:1 trioctahedral phyllosilicates. The structural model requires only the chemical formulae of the clay minerals as an input and uses the regression relation (Radoslovich, 1962) to calculate the a- and b-dimensions of the phyllosilicates with the given chemical formulae. The atomic coordinates of the constituent atoms are geometrically calculated for C2/m space group under the assumption that the interatomic distances are constant. To determine the c-dimension, this study calculates the binding energies of 1M 2:1 trioctahedral phyllosilicates as a function of d(001) and find the minimum energy producing d(001). The structural model generates the cell dimensions, interaxial angles, interatomic distances, octahedral, tetrahedral and interlayer thickness, polyhedron deformation angles and atomic coordinates in the unit cell. The simulated structural parameters of phlogopite and annite are very close to the reported data by Hazen and Burnham (1973), suggesting that the structure simulation using only the chemical formule is successful, and thus, that the structural model of this study overcomes the difficulties in the previous models by other investigators.

  • PDF

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.

One-dimensional XRD-Pattern Calculations of Clay Minerals: I. Dioctahedral and Trioctahedral Fe-rich Smectites (粘土鑛物의 一次元的 X-線 回折圖形의 計算: I. Dioctahedral 과 Trioctahedral Fe-rich 스멕타이트)

  • Ahn, Jung-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.11-21
    • /
    • 1991
  • XRD patterns of biedellite-nontronite and saponite-iron saponite series were investigated using one-dimensional pattern simulation method. Ethylene-glycolate smectites show stronger 002 and 003 reflections than hydrated specimens do. The intensities of the 002 and 003 reflections change systematically as a function of Fe enrichment in both types of smectites. The intensity ratio of 002/003 increases with increasing. Fe in both dioctahedral to the higher scattering factor of Fe than those of Al and Mg, and the scattering power of various smectites can be compared quantitatively by calculating the scattering factors of octahedral cations. Interlayer cations cause less effect on XRD profile than octahedral cations as Fe do. Although 001 reflections provide informations about the overall scattering power of the octahedral sheet, some ferrous dioctahedtal smectite cannot be distinguished unambiguously from trioctahedral smectites on the basis of XRD profile. Simulation showed that heterogeneous smectites exhibit 001 intensity distribution that is almost identical to that of homogeneous smectites having the average composition of heterogeneous ones. The broadening of 001 reflections may not be useful in evaluating the degree of heterogeneity of smectite unless other factors affecting the broadening are well known.

  • PDF

A Study on the Clay Minerals in the Han River Estuary and the Kyonggi Bay Areas (한강하구 및 경기만에서의 점토광물에 대한 연구)

  • 박정기;오재경
    • 한국해양학회지
    • /
    • v.26 no.4
    • /
    • pp.313-323
    • /
    • 1991
  • Fine-grained sediments of the Han River and adjacent Kyonggi Bay have been studied using the powder x-ray diffractometer in order to study the distributional characteristics of clay minerals in the bottom and suspended sediments. The result of the XRD analyse shows that the major clay minerals in the lower Han River are composed of illite (57.1%), kaolinite (22.9%), and chlorite (19.6%) and that those of the Han River Estuary are composed of illite (67.2%), chlorite (16.5%), kaolinite 915.5%), and smectite (1.3%). The variation of mineral content shows distinct distributional characteristics depending on sedimentary environments. The illite content increases gradually approaching the Kyonggi Bay and kaolinite content decreases toward the sea within the range between 11% and 23%. The trend of chlorite is similar to that of kaolinite, the amount of which ranges between 14% and 19%. Smectite content is lower than 3%. Analysis of illite using peak-intensity ratio (001/002) indicates that two types of illites occur in the study area. Dioctahedral-type illite occurs as an indicator of the marine sediments. The illites distributed between the Kyonggi Bay and the Han River are mixtures of dioctahedral- and trioctahedral-types. This study indicates that the distribution of illite, kaolimite, and chlorite has been influenced mainly by the supply from the Han River and redistributed by estuarine circulation, such as tidal circulation and seasonal variation of river discharge. However, smectite is apparently supplied from other sources such as Yellow Sea or China. This study suggests that estuarine mixing system and seasonal variations of river discharge are the major factors controlling the distribution pattern of clay minerals in the study area.

  • PDF