DOI QR코드

DOI QR Code

유한요소 열해석의 3차원 불일치격자경계면의 절점 접촉열교환계수 계산 연구

Study of Computing Nodal Thermal Contact Conductance between 3 Dimensional Unmatched Grid Interfaces for Finite Element Thermal Analysis

  • 투고 : 2017.06.21
  • 심사 : 2017.11.04
  • 발행 : 2017.12.01

초록

본 논문은 유한요소 열해석 시 불일치하는 격자 접촉면의 열교환계수를 효과적으로 계산하는 방법에 대해 논의한다. 원래 유한요소해석은 두 경계면 사이의 격자가 일치해야 하는데, 복잡하고 다양한 재질의 형상들의 접촉면을 모두 일치하기 위해서는 많은 수고와 계산량이 소요된다. 본문은 이를 극복하기 위해 서로 다른 두 격자면의 접촉 열교환계수를 각 절점으로 효과적으로 분배하는 새로운 기법을 제안하였다. 제시된 기법의 지향점을 서술하고 이를 위해 격자면의 형상에 의존성이 낮은 절점 가중치 분배 기법을 서술하였다. 그리고 이를 3차원의 곡면 접촉면에도 적용하여 제시한 방법론의 범용성을 확인함으로서 열해석을 포함한 여타 유한요소 해석 기법에도 적용 가능함을 알 수 있다.

This paper describes the algorithm of computing thermal contact conductance between unmatched grid interfaces for finite element thermal analysis. Because grid interfaces should be coincident with adjacent meshes for finite element method, large amount of man hours and huge computations are required to match interfaces between many numbers of complex subdomains. A novel method that distributes feasibly the conductances to interface nodes is proposed. The aims of the method are described, and details of the nodal conductance distribution algorithm with less dependency on meshes are represented. The algorithm can be applied both the flat and curved interfaces in 3 dimensional space, and proposed method can combined with many finite element application including thermal analysis.

키워드

참고문헌

  1. Kim, J. H., Woo, J. M., Cho, J. Y., and Kim, M. K., "Development of a Heat Transfer Analysis Program for Satellite Design," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2013, pp. 741-744.
  2. Kim, M. K., Hyun, B. S., Kim, J. H., Woo, J. M., and Cho, J. Y., "Functionalities and Verification of the Satellite Thermal Analysis Solver Based on Finite Element Method," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2014, pp. 948-951.
  3. Kim, M. K., "Evaluating Thermal Contact Conductances between Unmatched Grid Interfaces for Finite Element Thermal Analysis," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2016, pp. 1012-1013.
  4. Kim, M. K., "A Study of Assembling Radiation Exchange Matrix for Finite Element Thermal Analysis of a Satellite," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2015, pp. 754-757.
  5. Kim, M. K., "A Study of Temperature Transform Algorithm of Distinguished Grids between Thermal and Structural Mesh for Satellite Design," Journal of the Korea Society for Aeronautical and Space Sciences, Vol. 43, No. 9, 2015, pp. 805-813. https://doi.org/10.5139/JKSAS.2015.43.9.805
  6. Sutherland, I. and Hodgman, G. W., "Reentrant Polygon Clipping," Communication of ACM, Vol. 17, 1974, pp.32-42. https://doi.org/10.1145/360767.360802
  7. https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#C
  8. Daniel H. Greene. "The decomposition of polygons into convex parts." In Franco P. Preparata, editor, Computational Geometry, volume 1 of Adv. Comput. Res., JAI Press, Greenwich, Conn., 1983, pp.235-259.
  9. http://doc.cgal.org/latest/Partition_2/index.html
  10. Quick Reference Manual, NX Nastran 11, SIEMENS.
  11. Introduction to ANSYS Mechanical, ANSYS 16.0. ANSYS Inc.
  12. Abaqus Analysis User's Manual, Abaqus 6.12, DS Simulia.