DOI QR코드

DOI QR Code

우주 안테나 설계용 형상기억 폴리머 시편의 전개 시험

Deployment test of shape memory polymer specimens for space antenna design

  • 투고 : 2017.01.23
  • 심사 : 2017.11.14
  • 발행 : 2017.12.01

초록

본 연구에서는 우주 안테나 설계용 형상기억 폴리머 시편의 전개 시험을 수행하였다. Poly(cyclooctene)을 dicumyl peroxide를 이용하여 가교시켜 PCO 형상기억 폴리머를 제조하고, 이를 이용하여 지름이 120 mm인 전개형 안테나의 축소 모델을 제작하였다. 전개 성능 시험을 위하여 원형 형태의 형상기억 폴리머 시편을 반으로 접어 임시 형상을 만든 후 두 개의 히터로 형상기억 폴리머의 유리 전이 온도보다 $15^{\circ}C$ 높은 온도로 시편을 가열하였다. 먼저 시편을 수평 설치하여 전개 실험을 수행하였다. 시편의 전개 영상을 디지털 카메라를 사용하여 촬영한 후 트래커 프로그램을 이용하여 분석하였다. 중력의 효과를 최소화하기 위하여 수직 설치하여 다시 실험을 수행하였다. 두 실험의 결과를 비교하여 형상기억 폴리머 시편의 전개 성능을 고찰하였다.

In this study, we performed the deployment test of shape memory polymer specimens for space antenna design. Poly(cyclootene) was cross-linked by dicumyl peroxide to make a PCO shape memory polymer. A miniature specimen with 120 mm diameter for a deployable antenna was fabricated with the PCO shape memory polymer. To investigate the deployment performance, the folded specimen as a temporary shape was heated by two heaters to the $15^{\circ}C$ higher temperature than the glass transition temperature of shape memory polymer. Firstly, the specimen was installed horizontally and tested. The deploying motion was captured by a digital camera and analyzed by a Tracker program. To reduce the effects of gravity, the specimen was installed vertically and tested again. The deployment performance of a shape memory polymer was investigated by comparing the results of horizontal and vertical installation tests.

키워드

참고문헌

  1. Lendlein, A. and Kelly, S., "Shape-memory polymers," Angewandte Chemie International Edition, Vol. 41, No. 12, 2002, pp.2034-2057. https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
  2. Kusy, R. P. and Whitley, J. Q., "Thermal characterization of shape memory polymer blends for bio-medical implantation," Thermochimica Acta, Vol. 243, No. 2, 1994, pp.253-263. https://doi.org/10.1016/0040-6031(94)85060-7
  3. Liang, C., Rogers, C. A., and Malafeew, E., "Investigation of shape memory polymers and their hybrid composites," Journal of Intelligent Material Systems and Structures, Vol. 8. No. 4, 1997, pp.380-386. https://doi.org/10.1177/1045389X9700800411
  4. Barrett, R., Taylor, R., Keller, P., Codell, D., and Adams, L., "Deployable reflectors for small satellites," 21st Annual AIAA/USU Conference on Small Satellites, 2007.
  5. Liu, Y., Du, H., Liu, L., and Leng, J., "Shape memory polymers and their composites in aerospace applications: a review," Smart Materials and Structures, Vol. 23, No. 2, 2014, 2023001.
  6. Keller, P. N., Lake, M. S., Codell, D., Barrett, R., Taylor, R., and Schultz, M. R., "Development of elastic memory composite stiffeners for a flexible precision reflector," Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Vol. 10, 2006, pp.6984-6994.
  7. Liu, C., Chun, S. B., Mather, P. T., Zheng, L., Haley, E. H., and Coughlin, E. B., "Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior," Macromolecules, Vol. 35, No. 27, 2002, pp.9868-9874. https://doi.org/10.1021/ma021141j
  8. Wolfgang, W., Karl, K., Matthias, H., and Lendlein, A., "Shape-memory polymers and shape-changing polymers," Adv Polym Sci, Vol. 226, 2010, pp.97-145.
  9. Park, H., Harrison, P., Guo, Z., Lee, M. G, and Yu, W. R., "Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains," Mechanics of Materials, Vol. 93, 2016, pp.43-62. https://doi.org/10.1016/j.mechmat.2015.10.014
  10. Jeong, S. Y., Lee, S. Y., Bae, M. J., and Cho, K. D., "Configuration design of a deployable SAR antenna for space application and tool-kit development," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 4, No. 8, 2014, pp.683-691.
  11. Tibert, G., "Deployable Tensegrity Structures for Space Applications," PhD Thesis, Royal Institute of Technology, Sweden, 2002.