DOI QR코드

DOI QR Code

경추 사방향 검사에서 전후면과 후전면 자세에 따른 갑상선 표면선량 비교

Comparison of the Surface Dose of the Thyroid according to AP versus PA Positioning in Cervical Spine Oblique View

  • 박정호 (건국대학교병원 영상의학과) ;
  • 양성규 (건국대학교병원 영상의학과) ;
  • 김기정 (건국대학교병원 영상의학과) ;
  • 주영철 (삼성서울병원 영상의학과) ;
  • 홍동희 (극동대학교 방사선학과) ;
  • 임우택 (건국대학교병원 영상의학과)
  • 투고 : 2017.11.16
  • 심사 : 2017.12.18
  • 발행 : 2017.12.31

초록

경추 사방향 검사에서 전후면과 후전면 자세에 따른 갑상선 표면선량을 평가하여 검사 방법의 유용성을 알아보고자 하였다. 선량 측정은 Rando phantom을 이용하여 갑상선의 위치인 경추 4~5번에 선량계를 부착 시켜 측정하였다. 연구 결과, 전후면 사방향 자세와 후전면 사방향 자세의 표면선량 값은 kVp 변화에 따라 각각 $595.08{\pm}215.01{\mu}Gy$, $64.21{\pm}33.49{\mu}Gy$이었으며, mAs 변화에 따라 각각 $445.20{\pm}230.90{\mu}Gy$, $44.51{\pm}22.77{\mu}Gy$로 나타났다. 후전면 사방향 자세는 전후면 사방향 자세에 비해 갑상선이 받는 표면선량을 약 90% 감소시킬 수 있었으며, 각각의 비교에서 통계적으로 유의한 차이를 보였다(p<0.001). 따라서 방사선 감수성이 민감한 갑상선이 조사야 내에 포함된 경추검사에서는 환자의 표면선량을 줄이는데 후전면 사방향 자세가 유용할 것으로 판단된다.

The aim of this study was to evaluate anteroposterior oblique(RPO, LPO) and posteroanterior oblique(LAO, RAO) projections of the cervical spine, at various kVp and mA s increments, in order to compare thyroid surface dose. Using Rando phantom, dosimeter was attached to the Cervical spine 4~5 to measure the surface dose in the same thyroid position. As a result, the surface dose was $595.08{\pm}215.01{\mu}Gy$ for anteroposterior oblique(RPO, LPO) projections and $64.21{\pm}33.49{\mu}Gy$ for posteroanterior oblique(LAO, RAO) projections by changing kVp increment. The surface dose was $445.20{\pm}230.90{\mu}Gy$ for anteroposterior oblique(RPO, LPO) projections and $44.51{\pm}22.77{\mu}Gy$ for posteroanterior oblique(LAO, RAO) projections by changing mAs increment. The posteroanterior oblique method could reduce about 90% the surface dose than the anteroposterior oblique method. There were statistically significant differences among the examinations(p<0.001). Change the direction of position to reduce the surface dose at oblique projection of cervical spine. Therefore, we consider posteroanterior oblique projections than anteroposterior oblique projections of cervical spine examination in other to reduce patient surface dose.

키워드

참고문헌

  1. Kim MJ, DO KH, Kim KP, Hwang JY, Choi HJ, Kim SK. A Study on the Establishment of Radiation Dose Control System and Method for Radiation Exposure of Patients. Report of the Korea Institute for Health and Medical Affairs. 2014:1-155.
  2. Valentin J. The 2007 recommendations of the international commission on radiological protection: Elsevier Oxford; 2007.
  3. Tsuda T, Tokinobu A, Yamamoto E, Suzuki E. Thyroid cancer detection by ultrasound among residents ages 18 years and younger in Fukushima, Japan: 2011 to 2014. Epidemiology (Cambridge, Mass). 2016;27(3):316. https://doi.org/10.1097/EDE.0000000000000385
  4. Yi KH, Kim SY, Kim DH, Kim SW, Na DG, Lee YJ, et al. The Korean guideline for thyroid cancer screening. Journal of the Korean Medical Association. 2015;58(4):302-12. https://doi.org/10.5124/jkma.2015.58.4.302
  5. Block AJ, Goepp RA, Mason EW. Thyroid radiation dose during panoramic and cephalometric dental x-ray examinations. The Angle orthodontist. 1977; 47(1):17-24.
  6. Mountford P, Temperton D. Recommendations of the international commission on radiological protection (ICRP) 1990. European Journal of Nuclear Medicine and Molecular Imaging. 1992;19(2):77-9.
  7. Kwon S, Park C, Park J, Son W, Jung J. The Effect of Source to Image-Receptor Distance (SID) on Radiation Dose for Digital Chest Radiography. Journal of the Korean Society of Radiology. 2014; 8(4):203-10. https://doi.org/10.7742/jksr.2014.8.4.203
  8. Ben-Shlomo A, Bartal G, Mosseri M, Avraham B, Leitner Y, Shabat S. Effective dose reduction in spine radiographic imaging by choosing the less radiation-sensitive side of the body. The Spine Journal. 2016;16(4):558-63. https://doi.org/10.1016/j.spinee.2015.12.012
  9. Kim JS, Seo DN, Kwon SM, Kim JM. Patient radiation exposure dose evaluation of whole spine scanography due to exposure direction. Journal of the Korean Society of Radiological Technology. 2015;38(1):1-6. https://doi.org/10.17946/JRST.2015.38.1.01
  10. Hadley LA. Roentgenographic studies of the cervical spine. Postgraduate medicine. 1949;5(6):492-501. https://doi.org/10.1080/00325481.1949.11693836
  11. Ning P, Zhu S, Shi D, Guo Y, Sun M. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms. PloS one. 2014;9(3):e92568. https://doi.org/10.1371/journal.pone.0092568
  12. Cnrood. RaySafe Xi System [cited 2017 August 23]. Available from: https://www.cnrood.com/raysafe-xi-x-ray-measurement-system.html.
  13. Beir V. Health risks from exposure to low levels of ionizing radiation. The National Academies report in brief. 2005.
  14. Radiation UNSCotEoA. Effects of ionizing radiation: UNSCEAR 2006 Report to the General Assembly, with scientific annexes: United Nations Publications;2009.
  15. Tsuno M, Shu GJ. Posteroanterior versus anteroposterior lumbar spine radiology. Journal of manipulative and physiological therapeutics. 1990; 13(3):144-51.
  16. Davey E, England A. AP versus PA positioning in lumbar spine computed radiography: Image quality and individual organ doses. Radiography. 2015; 21(2):188-96. https://doi.org/10.1016/j.radi.2014.11.003
  17. Gialousis GI, Yakoumakis EN, Papadopoulou DI, Makri TK, Yakoumakis NE, Dimitriou PA, et al. Differences in effective dose and energy imparted estimation from PA-AP, RLAT-LLAT projections in pediatric full spine x-ray examination using the Monte Carlo technique. Physics in medicine and biology. 2005;51(2):287. https://doi.org/10.1088/0031-9155/51/2/007
  18. Ahn BJ. The Study Intervertebral Foramen Image for the Cervical spine of Posterior Anterio Oblique for the Angle. Journal of the Korean Society of Radiology 2015;9:197-203. https://doi.org/10.7742/jksr.2015.9.4.197