Anti-dementia Effects of Cornus officinalis S. et Z. extract on the Scopolamine Induced Dementia in Mouse

Scopolamine유도 치매쥐에서 산수유 추출물의 항치매 효과

  • Received : 2017.09.15
  • Accepted : 2017.12.01
  • Published : 2017.12.29

Abstract

These days, as the average span of population's life increases, the number patients of dementia also increases. But Research on Korean medicine is stilled limited. The research evaluates the effect of the extract from Cornus officinalis S.et Z on cognitive impairment induced by scopolamine in mice. The mice were randomly divided into five groups of ten mice. The normal group was treated with only 0.9% saline. The control group was treated with scopolamine (5 mg/kg, i.p.). The positive control group was treated with tacrin. The C100, 200 group was treated with C. officinalis extracts 100, 200 mg/kg. Memory-related behaviors were evaluated using a morris water maze and a passive avoidance test. Protein levels of BDNF, p-CREB (ser133), immunohistochemistry staining, and cholinergic activities were measured in brain tissue. The effects of C. officinalis extract significantly increased acetylcholine concentration and decreased acetylcholinesterase activity. The C. officinalis extract affected memory formation. Also, to confirm expression of protein BDNF, p-CREB (ser133) in the hippocampus, the researchers observed that immunohistochemistry and western blot increased in C. officinalis extract. These results suggest that C. officinalis provides a significant neuroprotective effect against scopolamine-induced cholinergic system and cognitive impairment.

Keywords

References

  1. 한국치매협회. http://www silverweb.or.kr/test/html/ml_03.asp.
  2. 헬스코리아뉴스. 한국인, 혈관성 및 혼합성 치매 비율 높아. 2010. 10. 25. Available URL; http://www.hkn24.com/news/artocleVies. htm? dxno=58417.
  3. 통계청 (2009) 연령별 사망원인. 2017. 9. 14. Available URL; http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B34E12&vw_cd=MT_ZTITLE&list_id=D11&seqNo=&lang_mode=ko&language=kor&obj_var_id=&itm_id=&conn_path=E1.
  4. Roberson, M. R. Kolasa, K. Parsons, D. S. and Harrell, L. E. (1997) Cholinergic denervation and sympathetic ingrwoth result in persistent changes in hippocampal muscarinic receptors. Neuroscience 80: 413-418. https://doi.org/10.1016/S0306-4522(97)00153-X
  5. 한원주, 김상태, 이충식, 박보라, 정은영, 김대현, 윤종현, 김진우, 강형원, 류영수, 김태헌 (2008) 壯元丸加減方 煎湯液이 APP로 유도된 형질전환 초파리에서의 항치매 효과. 동의생리병리학회지 22: 1215-1222.
  6. Man, S. C., Chan, K. W., Lu, J. H., Durairajan, S. S., Liu, L. F. and Li, M. (2012) Systemic review on the efficacy and safety of herbal medicines for vascular dementia. Evi-Based Corn. and Alt. Med. 22: http://dx.doi.org/10.1155/2012/426215.
  7. Han, S. H. (2009) Novel pharmacotherapies for Alzheimer'x disease. J. Korean Med. Assoc. 52: 1059-1068. https://doi.org/10.5124/jkma.2009.52.11.1059
  8. Yoon, Y. K. (2004) Explanation for traditional herbal formula. 3-17. Esung dang, Seoul.
  9. Vinjar, F., Sameline, G., Harald, W. C., Ritenbaugh, A., Johan, N. and Hugh, M. (2007) Researching complementary and altermative treatments-the garekeepers are mot at home. BMC. Med. Res. Merthods 7: https://doi.org/10.1186/1471-2288-7-7.
  10. Kim, H. G. and Oh, M. S. (2012) Herbal medicines for the prevention and treatment of Alzheimer'x diseases. Current Pharm. Design. 18: 57-75. https://doi.org/10.2174/138161212798919002
  11. Morris, R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. Neuro. Sci. Methods 11: 47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  12. Van der Zee, E. A., Biemans, B. A. M., Gerkema, M. P. and Daan, S. (2004) Habituation to a test apparatus during as sociative learning is sufficient to enhance muscarinic acethylcholine receptor immuno reactivity in rat supra chiasmatic nucleus. J. Neuro. sci. Res. 78: 508-519. https://doi.org/10.1002/jnr.20300
  13. Ellman, G., Lcourtney, K. D., Anders, V. Jr. and Feathers-Stone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Bio. chem. Pharmaco. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  14. Hestrin, S. (1949) Thereaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol Chem. 180: 249-261.
  15. Lowry, O. H., Rosebrough N. J., Farr A. L. and Rendall R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 26-30.
  16. Kruger, N. J. (1994) The Bradford method for protein quantitation.-Basic protein and peptide protocols. Springer, Cham, Switzerland.
  17. Woolf, N. J. (1997) A possible role for cholinergic neurons of the basal forebrain and pontomesence phalonin consciousness. Conscious Cong. 6: 574-596. https://doi.org/10.1006/ccog.1997.0319
  18. Fan, Y., Hu, J., Li, J., Yang, Z., Xin, X., Wang, J., Ding, J. and Geng, M. (2005) Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms. Neurosci. Lett. 374: 222-226. https://doi.org/10.1016/j.neulet.2004.10.063
  19. Yan, A. and Wang, K. (2012) Quantitative structure and bioactivity relationship study on human acetylcholine-esterase inhibitors. Bioorg. Med. Chem. Lett. 22: 3336-3342. https://doi.org/10.1016/j.bmcl.2012.02.108
  20. Sears, C., Markie, D., Olds, R. and Fitches, A. (2011) Evidence of associations between bipolar disorder and the brainderived neurotrophic factor (BDNF) gene. Bipolar. Disord. 13: 630-637. https://doi.org/10.1111/j.1399-5618.2011.00955.x
  21. Han, J. C., Liu, Q. R., Jones, M., Levinn, R. L., Menzie, C. M., Jefferson-George K. S., Adler-Wailes, D. C., Sanford, E. L., Lacbawan, F. L., Uhl, G. R., Rennert, O. M. and Yanovski, J. A. (2011) Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N. Engl. J. Med. 359: 918-927.
  22. Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G. and Silva, A. J. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive elementbinding protein. Cell 79: 59-68. https://doi.org/10.1016/0092-8674(94)90400-6
  23. Blendy, J. A. (2006) The role of CREB in depression and antidepressant treatment. Biol. Psychiatr. 59: 1144-1150. https://doi.org/10.1016/j.biopsych.2005.11.003
  24. Lee, B., Sur, B., Shim, J., Hahm, D. H. and Lee, H. (2014) Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. BMC Complement Altern. Med. 14: 338. https://doi.org/10.1186/1472-6882-14-338
  25. Riberson, M. R., Kolasa, K., Parsons, D. S. and Harrell, L. E. (1997) Cholinergic denervation and sympathetic ingrowth result in persistent changes in hippocampal muscarinic receptors. Neuroscience 80: 413-418. https://doi.org/10.1016/S0306-4522(97)00153-X
  26. Man, S. C., Chan, K. W., Lu, J. H., Durairajam Liu, S. S., Liu, L. F. and Li M. (2012) Systematic review on the efficacy and safety of herbal medicines for vascular dementia. Evi. Based Complement Altermat. Med. doi: 10.1155/2012/426215.
  27. Han, S. H. (2009) Novel pharmacotherapies for Alzheimer's disease. J. Korean Med. Assoc. 52: 1059-1068. https://doi.org/10.5124/jkma.2009.52.11.1059
  28. Woolf, N. J. (1997) A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Conscious Cong. 6: 574-596. https://doi.org/10.1006/ccog.1997.0319
  29. Chen, J., Long, Y., Han, M., Wang, T., Chen, Q. and Wang, R. (2008) Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice. Pharmacol. Biochem. Behav. 90: 441-446. https://doi.org/10.1016/j.pbb.2008.03.029