DOI QR코드

DOI QR Code

Rapid Identification of Methylglyoxal Trapping Constituents from Onion Peels by Pre-column Incubation Method

  • Kim, Ji Hoon (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Kim, Myeong Il (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Syed, Ahmed Shah (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University) ;
  • Jung, Kiwon (College of Pharmacy, CHA University) ;
  • Kim, Chul Young (College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University)
  • Received : 2017.08.02
  • Accepted : 2017.09.12
  • Published : 2017.12.29

Abstract

The methylglyoxal (MGO) trapping constituents from onion (Allium cepa L.) peels were investigated using pre-column incubation of MGO and crude extract followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Among major constituents in outer scale of onion, 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (2) was more effective MGO scavenger than quercetin (6) and its 4'-glucoside, spiraeoside (3). After 1 h incubation, compound 2 trapped over 90% MGO at a concentration of 0.5 mM under physiological conditions, but compounds 3 and 6 scavenged 45%, 16% MGO, respectively. HPLC-ESI/MS showed that compound 2 trapped two molecules of MGO to form a di-MGO adduct and compounds 3 and 6 captured one molecule of MGO to form mono-MGO adducts, and the positions 6 and 8 of the A ring of flavonoids were major active sites for trapping MGO.

Keywords

References

  1. Ramasamy, R.; Yan, S. F.; Schmidt, A. M. Cell 2006, 124, 258-260. https://doi.org/10.1016/j.cell.2006.01.002
  2. Tang, D.; Zhu, J. X.; Wu, A. G.; Xu, Y. H.; Duan, T. T.; Zheng, Z. G.; Wang, R. S.; Li, D.; Zhu, Q. J. Chromatogr. A. 2013, 1286, 102-110. https://doi.org/10.1016/j.chroma.2013.02.058
  3. Lv, L.; Shao, X.; Chen, H.; Ho, C. T.; Sang, S. Chem. Res. Toxico. 2011, 24, 579-586. https://doi.org/10.1021/tx100457h
  4. Lv, L.; Shao, X.; Wang, L.; Huang, D.; Ho, C. T.; Sang, S. J. Agric. Food Chem. 2010, 58, 2239-2245. https://doi.org/10.1021/jf904122q
  5. Schleicher, E. D.; Wagner, E.; Nerlich, A. G. J. Clin. Invest. 1997, 99, 457-468. https://doi.org/10.1172/JCI119180
  6. Yoon, S. R.; Shim, S. M. LWT-Food Sci. Technol. 2015, 61, 158- 163. https://doi.org/10.1016/j.lwt.2014.11.014
  7. Shao, X.; Bai, N.; He, K.; Ho, C. T.; Yang, C. S.; Sang, S. Chem. Res. Toxicol. 2008, 21, 2042-2050. https://doi.org/10.1021/tx800227v
  8. Li, X.; Zheng, T.; Sang, S.; Lv, L. J. Agric. Food Chem. 2014, 62, 12152-12158. https://doi.org/10.1021/jf504132x
  9. Yang, B. N.; Choi, E. H.; Shim, S. M. Appl. Biol. Chem. 2017, 60, 57-62. https://doi.org/10.1007/s13765-016-0251-y
  10. Totlani, V. M.; Peterson, D. G. J. Agric. Food Chem. 2006, 54, 7311-7318. https://doi.org/10.1021/jf061244r
  11. Lo, C. Y.; Li, S.; Tan, D.; Pan, M. H., Sang, S.; Ho, C. T. Mol. Nutr. Food Res. 2006, 50, 1118-1128. https://doi.org/10.1002/mnfr.200600094
  12. Hu, T. Y.; Liu, C. L.; Chyau, C. C.; Hu, M. L. J. Agric. Food Chem. 2012, 60, 8190-8196. https://doi.org/10.1021/jf302188a
  13. Peng, X.; Cheng, K. W.; Ma, J.; Chen, B.; Ho, C. T.; Lo, C.; Chen, F.; Wang, M. J. Agric. Food Chem. 2008, 56, 1907-1911. https://doi.org/10.1021/jf073065v
  14. Chen, X. Y.; Huang, I. M.; Hwang, L. S.; Ho, C. T.; Li, S.; Lo, C. Y. J. Funct. Foods 2014, 8, 259-268. https://doi.org/10.1016/j.jff.2014.03.025
  15. Zhu, Y.; Zhao, Y.; Wang, P.; Ahmedna, M.; Sang, S. Chem. Res. Toxicol. 2015, 28, 1842-1849. https://doi.org/10.1021/acs.chemrestox.5b00293
  16. Ly, T. N.; Hazama, C.; Shimoyamada, M.; Ando, H.; Kato, K.; Yamauchi, R. J. Agric. Food Chem. 2005, 53, 8183-8189. https://doi.org/10.1021/jf051264d
  17. Xue, Y. L.; Ahiko, T.; Miyakawa, T.; Amino, H.; Hu, F.; Furihata, K.; Kita, K.; Shirasawa, T.; Sawano, Y.; Tanokura, M. J. Agric. Food Chem. 2011, 59, 5927-5934. https://doi.org/10.1021/jf104798n
  18. Kim, H. Y.; Kim, K. J. Agric. Food Chem. 2003, 51, 1586-1591. https://doi.org/10.1021/jf020850t
  19. Shao, X.; Chen, H.; Zhu, Y.; Sedighi, R.; Ho, C. T.; Sang, S. J. Agric. Food Chem. 2014, 62, 3202-3210. https://doi.org/10.1021/jf500204s
  20. Wang, P.; Chen, H.; Sang, S. Chem. Res. Toxicol. 2016, 29, 406- 414. https://doi.org/10.1021/acs.chemrestox.5b00516
  21. Zhu, D.; Wang, L.; Zhou, Q.; Yan, S.; Li, Z.; Sheng, J.; Zhang, W. Mol. Nutr. Food Res. 2014, 58, 2249-2260. https://doi.org/10.1002/mnfr.201400533

Cited by

  1. Antiglycation Activity of Aucubin In Vitro and in Exogenous Methylglyoxal Injected Rats vol.24, pp.20, 2017, https://doi.org/10.3390/molecules24203653
  2. Anti‐AGE activity of poplar‐type propolis: mechanism of action of main phenolic compounds vol.55, pp.2, 2020, https://doi.org/10.1111/ijfs.14284
  3. Investigation of the Phytochemical Composition, Antioxidant Activity, and Methylglyoxal Trapping Effect of Galega officinalis L. Herb In Vitro vol.25, pp.24, 2017, https://doi.org/10.3390/molecules25245810