DOI QR코드

DOI QR Code

Inhibitory Effects of Methanol Extract from Nardostachys chinensis on 27-hydroxycholesterol-induced Differentiation of Monocytic Cells

  • Son, Yonghae (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Kim, Hyungwoo (Division of Pharmacology, School of Korean Medicine, Pusan National University) ;
  • Yang, Beodeul (Division of Pharmacology, School of Korean Medicine, Pusan National University) ;
  • Kim, Boyoung (Department of Pharmacology, School of Medicine, Pusan National University) ;
  • Park, Young Chul (Department of Microbiology and Immunology, Pusan National University - School of Medicine) ;
  • Kim, Koanhoi (Department of Pharmacology, School of Medicine, Pusan National University)
  • Received : 2017.07.04
  • Accepted : 2017.08.07
  • Published : 2017.12.29

Abstract

27-Hydroxycholesterol (27OHChol) has been reported to induce differentiation of monocytic cells into a mature dendritic cell phenotype. We examined the effect of methanol extract of Nardostachys chinensis (Nard) on 27OHChol-induced differentiation using THP-1, a human monocytic cell line. Treatment of monocytic cells with methanol extract of Nard resulted in decreased transcription and surface expression of CD80, CD83, and CD88 elevated by 27OHChol in a dose-dependent manner. Surface levels of MHC class I and II molecules elevated by 27OHChol were also reduced to basal levels by treatment with the Nard extract. Decreased endocytosis activity caused by 27OHChol was recovered by treatment with the Nard extract. CD197 expression and cell attachment were attenuated by the Nard extract. In addition, levels of transcription and surface expression of CD molecules involved in atherosclerosis, such as CD105, CD137, and CD166 upregulated by 27OHChol were significantly decreased by treatment with methanol extract of Nard. These results indicate that methanol extract of Nard down-regulates 27OHChol-induced differentiation of monocytic cells into a mature dendritic cell phenotype and expression of CD molecules associated with atherosclerosis. The current study suggests that biological activity of oxygenated cholesterol derivatives can be inhibited by herbal medication.

Keywords

References

  1. Sallusto, F.; Lanzavecchia, A. J. Exp. Med. 1994, 179, 1109-1118. https://doi.org/10.1084/jem.179.4.1109
  2. Zhou, L. J.; Tedder, T. F. Proc. Natl. Acad. Sci. U.S.A.1996, 93, 2588-2592. https://doi.org/10.1073/pnas.93.6.2588
  3. Lyakh, L. A.; Koski, G. K.; Telford, W.; Gress, R. E.; Cohen, P. A.; Rice, N. R. J Immunol. 2000, 165, 3647-3655. https://doi.org/10.4049/jimmunol.165.7.3647
  4. Berges, C.; Naujokat, C.; Tinapp, S.; Wieczorek, H.; Hoh, A.; Sadeghi, M.; Opelz, G.; Daniel, V. Biochem. Biophys. Res. Commun.2005, 333, 896-907. https://doi.org/10.1016/j.bbrc.2005.05.171
  5. Son, Y.; Kim, S. M.; Lee, S. A.; Eo, S. K.; Kim, K. Biochem. Biophys. Res. Commun. 2013, 438, 161-168. https://doi.org/10.1016/j.bbrc.2013.07.046
  6. Takaya, Y.; Takeuji, Y.; Akasaka, M.; Nakagawasai, O.; Tadano, T.; Kisara, K.; Kim, K.; Wataya, Y.; Niwa, M.; Oshima, Y. Tetrahedron 2000, 56, 7673-7678. https://doi.org/10.1016/S0040-4020(00)00682-7
  7. Zhang, J.; Qiang, C. C.; Li, W. J.; Liu, L. J.; Lin, X. X.; Cheng, Y. J.; Tang, K.; Yao, F. J.; Wu, S. H. J. Cardiovasc. Pharmacol. 2014, 64, 127- 133. https://doi.org/10.1097/FJC.0000000000000096
  8. Takemoto, H.; Omameuda, Y.; Ito, M.; Fukuda, T.; Kaneko, S.; Akaike, A.; Kobayashi, Y. Biol. Pharm. Bull. 2014, 37, 1050-1055. https://doi.org/10.1248/bpb.b14-00136
  9. Hwang, J. S.; Lee, S. A.; Hong, S. S.; Han, X. H.; Lee, C.; Lee, D.; Lee, C. K.; Hong, J. T.; Kim, Y.; Lee, M. K.; Hwang, B. Y. Bioorg. Med. Chem. Lett. 2012, 22, 706-708. https://doi.org/10.1016/j.bmcl.2011.10.043
  10. Seo, H. C.; Kim, S. M.; Eo, S. K.; Rhim, B. Y.; Kim, K. Biomol. Ther (Seoul). 2015, 23, 84-89. https://doi.org/10.4062/biomolther.2014.067
  11. Steinman, R. M. Annu.Rev. Immunol. 1991, 9, 271-296. https://doi.org/10.1146/annurev.iy.09.040191.001415
  12. Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y. J.; Pulendran, B.; Palucka, K. Annu. Rev. Immunol. 2000, 18, 767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  13. Perry, H. M.; McNamara, C. A. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1548-1549. https://doi.org/10.1161/ATVBAHA.112.249235
  14. Profumo, E.; Buttari, B.; Saso, L.; Capoano, R.; Salvati, B.; Rigano R. Scientific World J. 2012, 2012, 157534.
  15. Katz, F. E.; Parkar, M.; Stanley, K.; Murray, L. J.; Clark, E. A.; Greaves, M. F. Eur. J. Immunol. 1985, 15, 103-106. https://doi.org/10.1002/eji.1830150121
  16. Fujimoto, Y.; Tu, L.; Miller, A. S.; Bock, C.; Fujimoto, M.; Doyle, C.; Steeber, D. A.; Tedder, T. F. Cell 2002, 108, 755-767. https://doi.org/10.1016/S0092-8674(02)00673-6
  17. Gavett, S. H.; O'Hearn, D. J.; Li, X.; Huang, S. K.; Finkelman, F. D.; Wills-Karp, M. J. Exp. Med. 1995, 182, 1527-1536. https://doi.org/10.1084/jem.182.5.1527
  18. Banchereau, J.; Steinman, R. M. Nature 1998, 392, 245-252. https://doi.org/10.1038/32588
  19. Moschovakis, G. L.; Bubke, A.; Dittrich-Breiholz, O.; Braun, A.; Prinz, I.; Kremmer, E.; Forster, R. Eur. J. Immunol. 2012, 42, 48-57. https://doi.org/10.1002/eji.201141753
  20. DuSell, C. D.; Umetani, M.; Shaul, P. W.; Mangelsdorf, D. J.; McDonnell, D. P. Mol. Endocrinol. 2008, 22, 65-77. https://doi.org/10.1210/me.2007-0383
  21. Piao, M.; Tokunaga, O. J. Atheroscler. Thromb. 2006, 13, 82-89. https://doi.org/10.5551/jat.13.82
  22. Olofsson, P. S.; Söderström, L. A.; Wågsäter, D.; Sheikine, Y.; Ocaya, P.; Lang, F.; Rabu, C.; Chen, L.; Rudling, M.; Aukrust, P.; Hedin, U.; Paulsson-Berne, G.; Sirsjo, A.; Hansson, G. K. Circulation 2008, 117, 1292-1301. https://doi.org/10.1161/CIRCULATIONAHA.107.699173
  23. Kim, S. M.; Kim, B. Y.; Lee, S. A.; Eo, S. K.; Yun, Y.; Kim, C. D.; Kim, K. Toxicol. Appl. Pharmacol. 2014, 274, 462-470. https://doi.org/10.1016/j.taap.2013.12.007

Cited by

  1. Preparation of Herbal Formulation for Inflammatory Bowel Disease Based on In Vitro Screening and In Vivo Evaluation in a Mouse Model of Experimental Colitis vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030464
  2. Anti-Angiogenic Effect of Asperchalasine A Via Attenuation of VEGF Signaling vol.9, pp.8, 2017, https://doi.org/10.3390/biom9080358