DOI QR코드

DOI QR Code

Assessment of Spatial Dose Distribution in the Diagnostic Imaging Laboratory by Monte Carlo Simulation

몬테카를로 전산해석에 의한 X선 실습실의 공간선량분포 평가

  • Cho, Yun-Hyeong (Department of Radiological Science, Konyang University) ;
  • Kang, Bo Sun (Department of Radiological Science, Konyang University)
  • Received : 2017.09.19
  • Accepted : 2017.11.30
  • Published : 2017.11.30

Abstract

In this study, the calculation of the effective spatial dose distribution of the diagnostic imaging laboratory of K university was performed by the Monte Carlo simulation. The radiation generator has a maximum tube voltage of 150 kVp and a maximum current of 700 mA. Using the results, we compared the spatial effective dose distributions of diagnostic imaging laboratory when the shielding door was closed and opened. In conclusion, it was found that the effective dose in the operating room of the diagnostic imaging laboratory does not exceed the annual dose limit (6 mSv/y) of the student (occasional visitor) even when the door is opened. However, since the effective dose when the door is open is about 16 times higher in front of the lead glass window and about 3,000 times higher in front of the doorway than the case when the door is closed, closing the shielding door at the time of the practical exercising reduces unnecessary radiation exposure by great extent.

본 연구에서는 몬테카를로 전산해석법으로 K대학교 진료영상 촬영 실습실의 방사선 조사실과 발생장치 제어실 내부 공간 유효선량률 분포 계산을 수행하였다. 방사선 발생장치는 최대 관전압 150 kVp에 최대 관 전류 700 mA이다. 전산해석 결과를 이용하여 차폐문이 닫힌 경우와 열린 경우의 진료영상 촬영 실습실의 공간선량 분포를 비교 평가하였다. 결과적으로, 차폐문이 열린 경우에도 방사선 발생장치 제어실의 유효선량률은 학생(수시출입자)의 연간 유효선량률 한도(6 mSv/y)를 초과하지 않는다는 것을 알 수 있었다. 하지만, 차폐문이 열려있을 때의 유효선량률이 차폐문이 닫힌 경우에 비해 납유리 앞에서는 약 16배, 차폐문 앞에서는 약 3,000배 더 높기 때문에 실습 중에 차폐문을 닫는 것이 불필요한 방사선 피폭을 크게 줄인다는 것을 알 수 있었다.

Keywords

References

  1. J. VALENTIN, The 2007 Recommendaitons of the International Commission on Radiological Protection, Elsevier science Publishing Co., pp. 89-91, 2007.
  2. Dennis B. Pelowitz, $MCNPX^{TM}$ USER'S MANUAL, Version 2.7.0, pp. 11-13, 2011.
  3. Andrew M. Hernandez, John M. Boone, "Tungsten anode spectral model using interpolating cubic splines : Unfiltered x-ray spectra from 20 kV to 640 kV", Medical Physics, Vol. 41, No. 4, 2014.
  4. Virginia L. Maniquis, Monte Carlo Dose Verfication of an X-ray Beam in a Virtual $Water^{TM}$ Phantom, Georgia Institute of Technology, pp. 13-16, 2006.
  5. M. Baptista, P. Teles, G. Cardoso, P. Vaz, "Assessment of the dose distribution inside a caridac lab using TLD measurements and Monte Carlo simulations", Radiation Physics and Chemistry, Vol. 104, pp. 163-169, 2014. https://doi.org/10.1016/j.radphyschem.2014.03.006
  6. N. Petoussi-Henss, W.E. Bolch, K.F. Eckerman, A.Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl, Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures, Elsevier Science Publishing Co., pp. 117-126, 2010.
  7. M.H. Kang, J.M. Cho, B.J. Jung, S.C. Noh, S.S. Kang, I.H. Choi, H.J. Jung, J.K. Park, "A Study for Dose Difference of Anode and Cathode by the Size of Radiation Field in Normal Chest X-ray Examination", The Korean Society of Radiology, Vol. 8, No. 1, pp. 113-115, 2014.
  8. Fred A. Mettler, Walter Huda, Terry T. Yoshizumi, Mahadevappa Mahesh, "Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog", Radiology, Vol. 248, No. 1, July 2008.

Cited by

  1. 방사선(학)과의 작업종사자와 수시출입자의 교내 실습에 따른 피폭선량에 대한 고찰 vol.15, pp.3, 2017, https://doi.org/10.7742/jksr.2021.15.3.355