DOI QR코드

DOI QR Code

Recent advances on bio-alcohol production from syngas using microorganisms

미생물을 이용한 합성가스로부터 바이오 알코올 생산 최신 동향

  • Woo, Ji Eun (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science Technology (BK21 Plus), Gyeongsang National University) ;
  • Jang, Yu-Sin (Institute of Agriculture & Life Science (IALS), Department of Agricultural Chemistry and Food Science Technology, Division of Applied Life Science Technology (BK21 Plus), Gyeongsang National University)
  • Received : 2017.08.15
  • Accepted : 2017.09.15
  • Published : 2017.12.01

Abstract

Cellulosic alcohol fermentation has recently gained more attention in the production of ethanol, butanol, and 2,3-butanediol. However, it was revealed that the process had several hurdles, such as, an expensive cost for biomass decomposition to yield fermentable sugars and a production of byproduct lignin. As an alternative for the process through biomass saccharification, the alcohol production through syngas from biomass has been studied. In this study, we reviewed acetogen and its central metabolic pathway, Wood-Ljungdahl route, capable of utilizing syngas. Furthermore, the metabolic engineering strategies of acetogen for bio-alcohol production from syngas was also reviewed with a brief perspective.

최근 미생물을 이용하여 목질계 바이오매스로부터 에탄올, 부탄올, 2,3-부탄디올과 같은 바이오 알코올을 생산하고자 하는 관심이 매우 높아져 있다. 하지만, 목질계 바이오매스의 전처리 과정에서 높은 비용이 발생함과 동시에 리그닌과 같은 이용하지 못하는 성분들이 상당부분을 차지하는 문제점들이 노출되고 있다. 이와 같은 문제 해결을 위하여 바이오매스를 합성가스로 전환하고, 이들을 이용하여 바이오 알코올을 생산하는 전략이 새로운 대안으로 부상하고 있다. 따라서, 본 연구에서는 합성가스를 이용하는 미생물인 아세토젠(acetogen)을 소개하고, 이들의 중심대사회로인 우드-륭달 대사회로(Wood-Ljungdahl pathway)를 리뷰하였다. 또한, 최근 합성가스로부터 바이오 알코올을 생산하기 위한 대사공학 연구 전략을 리뷰하고, 향후 연구 방향을 전망하였다.

Keywords

References

  1. Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491: 235-239 https://doi.org/10.1038/nature11594
  2. Becker J, Wittmann C (2012) Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 23: 631-640 https://doi.org/10.1016/j.copbio.2011.11.012
  3. Bengelsdorf FR, Poehlein A, Linder S, Erz C, Hummel T, Hoffmeister S, Daniel R, Durre P (2016) Industrial acetogenic biocatalysts: a comparative metabolic and genomic Analysis. Front Microbiol 7: 1036
  4. Bruant G, Levesque M-J, Peter C, Guiot SR, Masson L (2010) Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans Strain P7T. PLOS ONE 5: e13033 https://doi.org/10.1371/journal.pone.0013033
  5. Chen GQ, Patel MK (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112: 2082-2099 https://doi.org/10.1021/cr200162d
  6. Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83: 1035-1043 https://doi.org/10.1007/s00253-009-1925-8
  7. Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25: 425-441 https://doi.org/10.1016/j.biotechadv.2007.04.001
  8. Clomburg JM, Crumbley AM, Gonzalez R (2017) Industrial biomanufacturing: The future of chemical production. Science 355: 3620
  9. Durre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35: 63-72 https://doi.org/10.1016/j.copbio.2015.03.008
  10. Islam MA, Zengler K, Edwards EA, Mahadevan R, Stephanopoulos G (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model. Integr Biol (Camb) 7: 869-882 https://doi.org/10.1039/C5IB00095E
  11. Jang YS, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012a) Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 109: 2437-2459 https://doi.org/10.1002/bit.24599
  12. Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung do Y, Lee SY (2012b) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3: e00314-12
  13. Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY (2012c) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30: 989-1000 https://doi.org/10.1016/j.biotechadv.2011.08.015
  14. Jones SW, Fast AG, Carlson ED, Wiedel CA, Au J, Antoniewicz MR, Papoutsakis ET, Tracy BP (2016) $CO_2$ fixation by anaerobic nonphotosynthetic mixotrophy for improved carbon conversion. Nat Commun 7: 12800 https://doi.org/10.1038/ncomms12800
  15. Kim DU, Kim HJ, Jeong YS, Na HB, Cha Y-L, Koo B-C, Kim J, Yun HD, Lee J-K, Kim H (2015) Enhanced saccharification of reed and rice straws by the addition of a-1,3-1,4-glucanase with broad substrate specificity and calcium ion. Appl Biol Chem 58: 29-33
  16. Kim E-A, Lee S-Y, Lee S-Y (2016a) Quality characteristics of steamed rice bread prepared with different contents of proteolytic enzyme. Appl Biol Chem 59: 95-102
  17. Kim M-S, Woo M-H, Chang Y-H, Chung N, Kim J-S (2016b) Biochemical characterization of a noble xylanase from Paenibacillus sp. EC116. Appl Biol Chem 59: 313-320
  18. Kopke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol 80: 3394-3403 https://doi.org/10.1128/AEM.00301-14
  19. Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107: 13087-13092 https://doi.org/10.1073/pnas.1004716107
  20. Kopke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77: 5467-5475 https://doi.org/10.1128/AEM.00355-11
  21. Lagoa-Costa B, Abubackar HN, Fernandez-Romasanta M, Kennes C, Veiga MC (2017) Integrated bioconversion of syngas into bioethanol and biopolymers. Bioresour Technol 239: 244-249 https://doi.org/10.1016/j.biortech.2017.05.019
  22. Lee C-K, Jang M-Y, Park HR, Choo G-C, Cho HS, Park S-B, Oh K-C, An JB, Kim B-G (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. strain JMY1 isolated from forest soil. Appl Biol Chem 59: 415-423 https://doi.org/10.1007/s13765-016-0179-2
  23. Liew F, Henstra AM, Kpke M, Winzer K, Simpson SD, Minton NP (2017) Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 40: 104-114 https://doi.org/10.1016/j.ymben.2017.01.007
  24. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16: 577-583 https://doi.org/10.1016/j.copbio.2005.08.009
  25. Martin ME, Richter H, Saha S, Angenent LT (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113: 531-539 https://doi.org/10.1002/bit.25827
  26. Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J, Wilkins MR, Huhnke RL (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: Medium development and culture techniques. Bioresour Technol 190: 114-121 https://doi.org/10.1016/j.biortech.2015.04.043
  27. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311: 484-489 https://doi.org/10.1126/science.1114736
  28. Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26: 100-108 https://doi.org/10.1016/j.tibtech.2007.11.006
  29. Straathof AJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chemical reviews 114: 1871-1908 https://doi.org/10.1021/cr400309c
  30. Tan Y, Liu ZY, Liu Z, Li FL (2015) Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Enzyme Microb Technol 79-80: 1-7 https://doi.org/10.1016/j.enzmictec.2015.06.011
  31. Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23: 364-381 https://doi.org/10.1016/j.copbio.2011.10.008
  32. Woo JE, Kim M, Noh HJ, Hwang N, Kim J-H, Lee SY, Jang Y-S (2016) Metabolic engineering of the genus Clostridium for butanol production. Kor J Microbiol 52: 391-397 https://doi.org/10.7845/kjm.2016.6057
  33. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71: 587-597 https://doi.org/10.1007/s00253-006-0445-z

Cited by

  1. Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 비타민과 황 공급원의 영향 vol.30, pp.6, 2017, https://doi.org/10.14478/ace.2019.1078