DOI QR코드

DOI QR Code

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae (Plasma Technology Research Center, National Fusion Research Institute (NFRI)) ;
  • Shin, Jin-ha (Plasma Technology Research Center, National Fusion Research Institute (NFRI)) ;
  • Lee, Kang-il (Plasma Technology Research Center, National Fusion Research Institute (NFRI)) ;
  • Choi, Yong Sup (Plasma Technology Research Center, National Fusion Research Institute (NFRI)) ;
  • Song, Young Il (Advanced Materials Science and Engineering, Advanced Materials and Process Research Center(AMPRC) Sungkyunkwan University) ;
  • Suh, Su Jeong (Advanced Materials Science and Engineering, Advanced Materials and Process Research Center(AMPRC) Sungkyunkwan University) ;
  • Jung, Yong Ho (Plasma Technology Research Center, National Fusion Research Institute (NFRI))
  • Received : 2017.09.21
  • Accepted : 2017.10.30
  • Published : 2017.11.30

Abstract

The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

Keywords

References

  1. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, NanoLett. 11, 2644-2647 (2011). https://doi.org/10.1021/nl200658a
  2. Y. Zhu, S. Murali, Meryl D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Science 332, 1537-1541 (2011). https://doi.org/10.1126/science.1200770
  3. T. H. Han, Y. Lee, M. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, Nat. Photonics 6, 105-110 (2012). https://doi.org/10.1038/nphoton.2011.318
  4. M. Layani, A. Kamyshny, and S. Magdassi, Nanoscale. 6, 5581-5591 (2014). https://doi.org/10.1039/C4NR00102H
  5. S. Liu, L. Zhou, L. Yao, L. Chai, L. Li, G. Zhang, Kankan, and K. Shi, J. Alloys Compd. 612, 126 (2014). https://doi.org/10.1016/j.jallcom.2014.05.129
  6. S. M. Kim and K. K. Kim, Appl.Sci.Converg.Technol. 24(6), 268 (2015). https://doi.org/10.5757/ASCT.2015.24.6.268
  7. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nature Nanotechnology 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  8. K. S. Kim, Y. Zhao, H. Jand, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B.H. Hong, Nature 457, 706 (2009). https://doi.org/10.1038/nature07719
  9. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  10. U. Cvelbar, B. Markoli, I. Poberaj, A. Zalar, L. Kosec, and S. Spaic, Appl. Surf. Sci. 253, 1861 (2006). https://doi.org/10.1016/j.apsusc.2006.03.028
  11. D. Mariotti and R Mohan Sankaran, J. Phys. D: Appl. Phys. 44, 174023 (2011). https://doi.org/10.1088/0022-3727/44/17/174023
  12. H. J. Cho, H. Kondo, K. Ishikawa, M. Sekine, M. Hiramatsu, and M. Hori, Carbon 68, 308 (2014). https://doi.org/10.1016/j.carbon.2013.11.007
  13. L. M. Malard, M.A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys Rep 473, 51 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
  14. N. Soi, S. S. Roy, C. O'Kane, J. A. D. McLaughlin, T. H. Lim, and C.J. D. Hetherington, CrystEngComm 13, 312 (2011). https://doi.org/10.1039/C0CE00285B
  15. Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res. 1, 237 (2008).
  16. J. S. Kim and M. A. Cappelli, J. Appl. Phys. 84, 4595 (1998). https://doi.org/10.1063/1.368685
  17. D. B. Hash and M. Meyyappan, J. Appl. Phys. 93, 750 (2002).
  18. R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, Adv. Mater. 22, 4014 (2010). https://doi.org/10.1002/adma.201000618
  19. Z. Bo, J. Yan, Z. Li, Y. Chi, and K. Cen, I. J. Hydrogen energy 33, 5545 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.101
  20. Y. Li, C. J. Liu, B. Eliasson, and Y. Wang, Energy & Fuels 16, 864 (2002). https://doi.org/10.1021/ef0102770
  21. N. Derkaoui, C. Rond, K. Hassouni, and A. Gicquel, J. Appl. Phys. 115, 233301 (2014). https://doi.org/10.1063/1.4883955
  22. G. Narasimhan and Ch. Steinbruchel, J. Vac. Sci. Technol. A 19, 376 (2001).
  23. M. Zho, J. Wang, Brian C. Holloway, R. R. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, Carbon 45, 2229 (2007). https://doi.org/10.1016/j.carbon.2007.06.017
  24. W. Zhang, P. Wu, Z. Li, and J. Yang, J. Phys. Chem. C 115, 17782 (2011). https://doi.org/10.1021/jp2006827