DOI QR코드

DOI QR Code

Poly(arylene ether ketone) block copolymer prepared through sulfonation process for polymer electrolyte membrane fuel cell

술폰화 공정을 통해 제조한 고분자 전해질형 연료전지용 폴리(아릴렌 이서 케톤) 블록 코폴리머

  • Jang, Hyeri (Graduate school, Department of Energy Storage.Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University) ;
  • Nahm, Keesuk (Graduate school, Department of Energy Storage.Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University) ;
  • Yoo, Dongjin (Graduate school, Department of Energy Storage.Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University)
  • 장혜리 (전북대학교 대학원, 공과대학교 에너지저장.변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단 및 수소연료전지센터) ;
  • 남기석 (전북대학교 대학원, 공과대학교 에너지저장.변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단 및 수소연료전지센터) ;
  • 유동진 (전북대학교 대학원, 공과대학교 에너지저장.변환공학과, 연료전지 시스템 전주기 R&D 고급트랙 사업단 및 수소연료전지센터)
  • Received : 2016.08.11
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

In this study, a sulfonated poly(arylene ether ketone) block copolymer was prepared from hydrophilic oligomer and hydrophobic oligomer. The structure of the prepared membrane was characterized by $^1H$-NMR, FT-IR and GPC. The $M_w$(weight-average molecular weights) of the polymer was $209,700g\;mol^{-1}$ and the molecular weight distribution($M_w/M_n$) of 1.25 was obtained. The prepared membrane showed excellent thermal stability with gradual weight loss up to $200^{\circ}C$. The proton conductivity of SPAEK block copolymer reached the maximum of $9.0mS\;cm^{-1}$ at $90^{\circ}C$ under 100% relative humidity (RH). From the observed results, it is necessary to do more aggressive attempt to study the possibility of application as an ion-conductive composite electrolyte.

본 연구에서는 술폰화된 sodium 5,5'-carbonylbis(2-fluorobenzene sulfonate) 단량체를 이용하여 친수성 올리고머를 합성한 뒤 소수성 올리고머와 1:1로 공중합반응을 시켜 sulfonated poly(arylene ether ketone) (SPAEK) 공중합체를 합성하였다. 제조한 공중합체의 구조 분석은 $^1H$-NMR, FT-IR, GPC를 사용하여 실시하였고, GPC에서 공중합체의 평균분자량은 $209,700g\;mol^{-1}$, 다분산지수(PDI)는 1.25이었다. 열적 안정성을 확인하기 위하여 TGA 분석을 실시하였고, $200^{\circ}C$이상에서의 열 안정성을 확인하였다. 고분자 전해질 막의 양이온 전도도는 상대습도 100%, $80^{\circ}C$의 온도에서 약 $9.0mS\;cm^{-1}$이었다. 측정된 결과로부터 본 연구에서 제조한 탄화수소계 전해질 막은 술폰화 정도를 증가시키거나 약간의 구조적 변형을 통해 연료전지용 고분자 전해질 막으로 적용 가능할 것으로 기대된다.

Keywords

References

  1. Park. J., Enomoto. K., Yamashita. T., Takagi. Y., 2013, Polymerization mechanism for radiation-induced grafting of styrene into alicyclic polyimide films for preparation of polymer electrolyte membranes, J. Membr. Sci. Vol. 438, pp. 1-7 https://doi.org/10.1016/j.memsci.2013.03.007
  2. Hickner. M. A., Ghassemi. H., Kim. Y. S., Einsla. B. R., McGrath. J. E., 2004, Alternative Polymer System for Proton Exchange Membranes (PEMs), Chem. Rev, Vol. 104, No. 10, pp. 4587-4612 https://doi.org/10.1021/cr020711a
  3. Chang. K. C, 2012, Fuel cell, Magazine of the SAREK, Vol. 41, No. 6, pp. 11-11
  4. Rikukawa, M., Sanui, K., 2000, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Polym. Sci. Vol. 25, No. 10, pp. 1463-1502
  5. Mauritz, K., A., Moore, R., B., 2004, State of Understanding of Nafion, Chem. Rev. 104, No. 10, pp. 4535-4586 https://doi.org/10.1021/cr0207123
  6. Chengji, Z., Haidan, L., Ke, S., Xianfeng, Hongzhe, N., Zhe, W., Hui, N., 2006, Block sulfonated poly (ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, J. Pow. Sour. Vol. 162, No. 2, pp. 1003-1009 https://doi.org/10.1016/j.jpowsour.2006.07.055
  7. Lei, W., Ke, L., Guangming, Z., Junqin, L., 2011, Preparation and properties of highly branched sulfonated poly(ether ether ketone)s doped with antioxidant 1010 as proton exchange membranes, J. Membr. Sci, Vol. 379, No. 1-2, pp. 440-448 https://doi.org/10.1016/j.memsci.2011.06.015
  8. Song, J., M., Lee, S., Y., Woo, H., S., Shin, D., W., Sohn, J., Y., Lee, Y., M., Shin, J., H., 2014, EB-crosslinked SPEEK electrolyte membrane with 1,4-butanediol divinyl ether/triallyl isocyanurate for fuel cell application, J. Membr. Sci. Vol. 469, pp. 209-215 https://doi.org/10.1016/j.memsci.2014.06.045
  9. Kobayashi, T., Rikukawa, M., Sanui, K., Ogata, N., 1998, Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics. Vol. 106, No. 3-4, pp. 219-225 https://doi.org/10.1016/S0167-2738(97)00512-2
  10. Wang, F., Chen, T., Xu, T., 1998, Sodium sulfonatefunctionalized poly(ether ether ketone)s, Macromol. Chem. Phys. Vol. 199, No. 7, pp. 1421-1426 https://doi.org/10.1002/(SICI)1521-3935(19980701)199:7<1421::AID-MACP1421>3.0.CO;2-P
  11. Schauer, J. Brozova., L., 2005, Heterogeneous ionexchange membranes based on sulfonated poly(1,4- phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties, J. Membr. Sci. Vol. 250, No. 1-2, pp. 151-157 https://doi.org/10.1016/j.memsci.2004.09.047
  12. Zhao, Y., Yin. J., 2010, Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application, 2010, J. Membr. Sci. Vol. 351, No. 1-2, pp. 28-35 https://doi.org/10.1016/j.memsci.2010.01.024
  13. Park, S.,Ruoff. R., S., 2009, Chemical methods for the production of graphenes, Nat Nanothechnol. Vol. 4, pp. 217-224 https://doi.org/10.1038/nnano.2009.58
  14. Guo, W., Li, X., Wang, H., Pang, J., Wang, G., Jiang. Z., 2013, Synthesis of branched sulfonated poly(aryl ether ketone) copolymers and their proton exchange membrane properties, J. Membr. Sci. Vol. 444, pp. 259-267 https://doi.org/10.1016/j.memsci.2013.05.045
  15. Kopitzke, R., W., Linkous. C., A., 2000, Conductivity and water uptake of aromatic-based proton exchange membrane electrolyte, J. Electrochem. Soc., Vol. 147, No. 5, pp. 1677-1681 https://doi.org/10.1149/1.1393417
  16. Kumar, G., G., Kim, A., R., Nahm, K., S., Yoo. D., J., Elizabeth. R., 2010, High ion and lower molecular transportation of the poly vinylidene fluoride- hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications, J. Pow. Sour, Vol. 195, No. 18, pp. 5922-5928 https://doi.org/10.1016/j.jpowsour.2009.11.021
  17. Chu, J., Y., Kim, A., R., Nahm, K., S., Lee, H., K., Yoo, D., J., 2013, Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6FBPA and perfluorobiphenylene units, J. Hydrogen, Energy, Vol. 38, No. 14, pp. 6268-6274 https://doi.org/10.1016/j.ijhydene.2012.11.144