DOI QR코드

DOI QR Code

Fabrication and characterization of a Flexible Polyethylene terephthalate (PET) Electrode based on Single-walled carbon nanotubes (SWNTs)

단일벽 탄소나노튜브를 이용한 플렉시블 폴리에틸렌테레프탈레이트 (PET) 전극의 제조와 특성

  • Du, Jin Feng (Department of chemical engineering, Daejin University) ;
  • Kim, Jang Hun (Department of chemical engineering, Daejin University) ;
  • Kim, Yong Ryeol (Department of chemical engineering, Daejin University) ;
  • Jeong, Hyeon Taek (Department of chemical engineering, Daejin University)
  • 두진펑 (대진대학교 화학공학과) ;
  • 김장훈 (대진대학교 화학공학과) ;
  • 김용렬 (대진대학교 화학공학과) ;
  • 정현택 (대진대학교 화학공학과)
  • Received : 2016.07.27
  • Accepted : 2016.09.29
  • Published : 2016.09.30

Abstract

In this study, flexible acid treated single walled carbon nanotubes (A-SWCNTs) electrodes were fabricated by using gold coated PET substrate and spray coating technique. The acid-treatment method was conducted to introduce functional groups on the SWCNTs wall, which could improve dispersability of the SWCNTs and its electrochemical property. The electrochemical properties of flexible A-SWCNTs electrode were carried out by cyclic voltammetry(CV), electrochemical impedance were carried out by cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge (GCD) cycles. As a results, The specific capacitance value of the unbent A-SWCNTs electrode was $67F{\cdot}g^{-1}$, which decreased to $63F{\cdot}g^{-1}$ (94% retention) after 1000 GCD cycles. Interestingly, the specific capacitance of the unbent A-SWCNTs electrode with application of the 1000 GCD cycles was retained even after 500 bending to $30^{\circ}$ with 6000 GCD cycles.

본 연구에서는 유연성을 갖는 전극 제조를 위해 산 처리된 단일벽 탄소나노튜브 (Acid treated-SWCNTs)를 금이 코팅된 PET 기판 위에 스프레이 코팅하였다. 단일벽 탄소나노튜브가 가지는 단점을 보완하기 위하여 산 처리 공정을 이용하여 나노튜브에 작용기를 도입하여 분산성을 극대화 시켰으며 전기화학적 특성을 향상 시켰다. 스프레이 기술을 이용하여 제조된 유연성을 갖는 단일벽 탄소나노튜브 기반의 전극을 1 M의 황산 전해질에서 순환 전압 전류법, 임피던스 분광법 그리고 충 방전 시험을 통하여 전기화학적 특성을 분석 하였다. 그 결과, 응력을 가하지 않은 전극의 전기 용량값은 $67F{\cdot}g^{-1}$로 측정 되었으며, 1000번의 충 방전 시험 후에는 전기 용량값이 $63F{\cdot}g^{-1}$ (94 % 유지)로 감소하는 결과를 보였다. 이에 반하여, 탄소나노튜브 기반의 플렉시블 전극은 500번의 굽힘 시험 (bending test)과 6000번의 충 방전 시험 후에는 초기의 전기 용량값 ($67F{\cdot}g^{-1}$)이 유지되는 결과를 얻었다.

Keywords

References

  1. Y, B, Wang C, Ding X, and G. G. Wallace, Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochimica Acta., 113, 17 (2013). https://doi.org/10.1016/j.electacta.2013.09.024
  2. F. Carpi and D. De Rossi, Electroactive polymer-based devices for e-textiles in biomedicine. Information Technology in Biomedicine, IEEE Transactions. 9(3), 295 (2005).
  3. S. Coyle, Y. Wu, K. T. Lau, D. De Rossi, G. Wallace, and D. Diamond, Smart nanotextiles: a review of materials and applications. Mrs Bulletin, 32(05), 434 (2007). https://doi.org/10.1557/mrs2007.67
  4. B. S. Shim, W. Chen, C. Doty, C. Xu, and NA. Kotov, Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano letters. 8(12), 4151 (2008) https://doi.org/10.1021/nl801495p
  5. H. Gwon, H. S. Kim, K. U Lee, D. H Seo, Y. C Park, and Y. S Lee, Flexible energy storage devices based on graphene paper Energy & Environmental Science. 4(4), 1277 (2011). https://doi.org/10.1039/c0ee00640h
  6. H. Sun, P. She, K. Xu, Y. Shang, S. Yin, and Z. Liu, A self-standing nanocomposite foam of polyaniline-reduced graphene oxide for flexible super-capacitors. Synthetic Metals. 209, 68 (2015). https://doi.org/10.1016/j.synthmet.2015.07.001
  7. Y. J. Kang, H. Chung, M. S. Kim, and W. Kim, Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors. Applied Surface Science. 355, 160 (2015) https://doi.org/10.1016/j.apsusc.2015.07.108
  8. T. Bordjiba, M. Mohamedi and L. H. Dao, New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced Materials. 20(4), 815 (2008). https://doi.org/10.1002/adma.200701498
  9. L. L. Zhang, and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews, 38(9), 2520 (2009). https://doi.org/10.1039/b813846j
  10. D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu and Y. Kakudate, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes. Nat Mater. 5(12), 987 (2006). https://doi.org/10.1038/nmat1782
  11. X. Lu, M, Yu, G. Wang, Y. Tong, and Y, Li. Flexible solid-state supercapacitors: design, fabrication and applications, Energy & Environmental Science, 7(7), 2160 (2014). https://doi.org/10.1039/c4ee00960f
  12. H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi, and Z. Gu, Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano letters. 8(9), 2664 (2008). https://doi.org/10.1021/nl800925j
  13. C, M. Yu, C. J. Rong, B. Wei and H. Jiang, Stretchable Supercapacitors Based on Buckled Single-Walled Carbon-Nanotube Macrofilms. Advanced Materials. 21(47), 4793 (2009). https://doi.org/10.1002/adma.200901775
  14. H. T. Jeong, B. C. Kim, M. J. Higgins and G.G. Wallace, Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. Electrochimica Acta. 163(0), 149 (2015). https://doi.org/10.1016/j.electacta.2015.02.022