References
- Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlinear Sci. Numer. Simul., 17(4), 1965-1979. https://doi.org/10.1016/j.cnsns.2011.08.043
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimensional Systems and Nanostructures, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Aydogdu, M. and Ece, M.C. (2006), "Buckling and vibration of non-ideal simply supported rectangular isotropic plates", Mech. Res. Commun., 33(4), 532-540. https://doi.org/10.1016/j.mechrescom.2005.08.002
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites Part B: Engineering, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41(22), 225404. https://doi.org/10.1088/0022-3727/41/22/225404
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 029. https://doi.org/10.12989/anr.2015.3.1.029
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Chang, T.P. (2012), "Thermal-mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Appl. Math. Model., 36(5), 1964-1973. https://doi.org/10.1016/j.apm.2011.08.020
- Civalek, O. and Demir, C. (2011a), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math.Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Civalek, O. and Demir, C. (2011b), "Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng. (Building and Housing), 12(5), 651-661.
- Civalek, O., Demir, C. and AkgOz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298.
- Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050
- Ebrahimi, F. and Salari E. (2015a), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Computer Modeling in Engineering & Sciences 105.2, 151-181.
- Ebrahimi, F. and Salari E. (2015b), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Composites Part B: Engineering, 79,156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
- Eigoli, A.K. and Ahmadian, M. (2011), "Nonlinear vibration of beams under nonideal boundary conditions", Acta Mechanica, 218(3-4), 259-267. https://doi.org/10.1007/s00707-010-0423-5
- Ekici, H.O. and Boyaci, H. (2007), "Effects of non-ideal boundary conditions on vibrations of microbeams", J. Vib.Control, 13(9-10), 1369-1378. https://doi.org/10.1177/1077546307077453
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (2002), Nonlocal continuum field theories: Springer Science & Business Media.
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Hamidi, A., Houari, M.S.A., Mahmoud, S. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. - ASCE, 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Mahmoud, S., Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A. and Beg, O.A. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425. https://doi.org/10.12989/scs.2015.18.2.425
- Malekzadeh, K., Khalili, S. and Abbaspour, P. (2010), "Vibration of non-ideal simply supported laminated plate on an elastic foundation subjected to in-plane stresses", Compos. Struct., 92(6), 1478-1484. https://doi.org/10.1016/j.compstruct.2009.09.059
- Murmu, T. and Pradhan, S. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
- Pakdemirli, M. and Boyac, H. (2001), "Vibrations of a stretched beam with non-ideal boundary", Math. Comput. Appl., 6(3), 217-220.
- Pakdemirli, M. and Boyac, H. (2003), "Non-linear vibrations of a simple-simple beam with a non-ideal support in between", J. Sound Vib., 268(2), 331-341. https://doi.org/10.1016/S0022-460X(03)00363-8
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Pradhan, S. and Reddy, G. (2011), "Thermo mechanical buckling analysis of carbon nanotubes on winkler foundation using non-local elasticity theory and DTM", Sadhana, 36(6), 1009-1019. https://doi.org/10.1007/s12046-011-0052-2
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", I Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sari, G. and Pakdemirli, M. (2012), "Effects of non-ideal boundary conditions on the vibrations of a slightly curved micro beam. Paper presented at the 9th international conference on mathematical problems in engineering, aerospace and sciences: ICNPAA 2012.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Tounsi, A., Bourada, M., Kaci, A. and Houari, M.S.A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409. https://doi.org/10.12989/scs.2015.18.2.409
- Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Wang, L., Ni, Q., Li, M. and Qian, Q. (2008), "The thermal effect on vibration and instability of carbon nanotubes conveying fluid", Physica E: Low-dimensional Systems and Nanostructures, 40(10), 3179-3182. https://doi.org/10.1016/j.physe.2008.05.009
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, Q., Zhou, G. and Lin, K. (2006), "Scale effect on wave propagation of double-walled carbon nanotubes", Int. J. Solids Struct., 43(20), 6071-6084. https://doi.org/10.1016/j.ijsolstr.2005.11.005
- Wattanasakulpong, N. and Mao, Q. (2015), "Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method", Compos. Struct., 119, 346-354. https://doi.org/10.1016/j.compstruct.2014.09.004
- Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143. https://doi.org/10.12989/sem.2015.53.6.1143
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zhang, C.L. and Shen, H.S. (2007), "Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments", Phys. Rev. B, 75(4), 045408. https://doi.org/10.1103/PhysRevB.75.045408
- Zhang, Y., Liu, G. and Wang, J. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430. https://doi.org/10.1103/PhysRevB.70.205430
- Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
Cited by
- On the electro-thermo-mechanical vibration characteristics of elastically restrained functionally graded nanobeams using differential transformation method vol.124, pp.12, 2018, https://doi.org/10.1007/s00339-018-2220-2
- Nonlinear vibration analysis of electro-hygro-thermally actuated embedded nanobeams with various boundary conditions pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3924-0
- Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2016, https://doi.org/10.12989/sss.2017.19.6.601
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.121
- Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat vol.20, pp.4, 2016, https://doi.org/10.12989/sss.2017.20.4.451
- Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- Size-dependent vibration in two-directional functionally graded porous nanobeams under hygro-thermo-mechanical loading vol.134, pp.9, 2016, https://doi.org/10.1140/epjp/i2019-12795-6