• 제목/요약/키워드: non-ideal boundary conditions

검색결과 6건 처리시간 0.022초

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

스펙트럴요소법을 이용한 구조물의 비이상적인 경계조건 결정에 관한 연구 (Determination of Non-ideal Structural Boundary Conditions by Using Spectral Element Method)

  • 전덕규;김주홍;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.160-165
    • /
    • 1997
  • Structural boundary condition is very important as a part of a structural system because it determines the dynamic characteristics of the structure. It is often to experience that experimental measurements of structural dynamic characteristics are somewhat different from the analytical predictions in which idealized boundary conditions are usually assumed. However, real structural boundary conditions are not so ideal; not perfectly clamped, for instance. Thus this paper introduces a new method to determine the non-ideal structural boundary conditions in the frequency domain. In this method, structural boundary conditions are modeled by both extensional (vertical) and torsional elastic springs. The effective springs are then determined from experimental FRFs (frequency response functions) by using the spectral element method (SEM). For a cantilevered beam experiments are conducted to determine the real boundary conditions in terms of effective springs. Dynamic characteristics (analytically predicted) based on identified boundary conditions are found to be much closer to experimental measurements when compared with those based on ideal boundary conditions.

  • PDF

Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions

  • Ebrahimi, Farzad;Shaghaghi, Gholam Reza
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1087-1109
    • /
    • 2016
  • In this manuscript, the small scale and thermal effects on vibration behavior of preloaded nanobeams with non-ideal boundary conditions are investigated. The boundary conditions are assumed to allow small deflections and moments and the concept of non-ideal boundary conditions is applied to the nonlocal beam problem. Governing equations are derived through Hamilton's principle and then are solved applying Lindstedt-Poincare technique to derive fundamental natural frequencies. The good agreement between the results of this research and those available in literature validated the presented approach. The influence of various parameters including nonlocal parameter, thermal effect, perturbation parameter, aspect ratio and pre-stress load on free vibration behavior of the nanobeams are discussed in details.

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

Dynamic characteristics of hygro-magneto-thermo-electrical nanobeam with non-ideal boundary conditions

  • Ebrahimi, Farzad;Kokaba, Mohammadreza;Shaghaghi, Gholamreza;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.169-182
    • /
    • 2020
  • This study presents the hygro-thermo-electromagnetic mechanical vibration attributes of elastically restrained piezoelectric nanobeam considering effects of beam surface for various elastic non-ideal boundary conditions. The nonlocal Eringen theory besides the surface effects containing surface stress, surface elasticity and surface density are employed to incorporate size-dependent effects in the whole of the model and the corresponding governing equations are derived using Hamilton principle. The natural frequencies are derived with the help of differential transformation method (DTM) as a semi-analytical-numerical method. Some validations are presented between differential transform method results and peer-reviewed literature to show the accuracy and the convergence of this method. Finally, the effects of spring constants, changing nonlocal parameter, imposed electric potential, temperature rise, magnetic potential and moisture concentration are explored. These results can be beneficial to design nanostructures in diverse environments.

Iris Image Enhancement for the Recognition of Non-ideal Iris Images

  • Sajjad, Mazhar;Ahn, Chang-Won;Jung, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권4호
    • /
    • pp.1904-1926
    • /
    • 2016
  • Iris recognition for biometric personnel identification has gained much interest owing to the increasing concern with security today. The image quality plays a major role in the performance of iris recognition systems. When capturing an iris image under uncontrolled conditions and dealing with non-cooperative people, the chance of getting non-ideal images is very high owing to poor focus, off-angle, noise, motion blur, occlusion of eyelashes and eyelids, and wearing glasses. In order to improve the accuracy of iris recognition while dealing with non-ideal iris images, we propose a novel algorithm that improves the quality of degraded iris images. First, the iris image is localized properly to obtain accurate iris boundary detection, and then the iris image is normalized to obtain a fixed size. Second, the valid region (iris region) is extracted from the segmented iris image to obtain only the iris region. Third, to get a well-distributed texture image, bilinear interpolation is used on the segmented valid iris gray image. Using contrast-limited adaptive histogram equalization (CLAHE) enhances the low contrast of the resulting interpolated image. The results of CLAHE are further improved by stretching the maximum and minimum values to 0-255 by using histogram-stretching technique. The gray texture information is extracted by 1D Gabor filters while the Hamming distance technique is chosen as a metric for recognition. The NICE-II training dataset taken from UBRIS.v2 was used for the experiment. Results of the proposed method outperformed other methods in terms of equal error rate (EER).