DOI QR코드

DOI QR Code

Numerical Study on Heat Transfer Performance of PCHE With Supercritical CO2 as Working Fluid

초임계 이산화탄소를 작동유체로 하는 인쇄기판형 열교환기의 형상변수에 따른 전열성능 수치모사

  • Jeon, Sang Woo (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Ngo, Ich-long (School of Mechanical Engineering, Yeungnam Univ.) ;
  • Byon, Chan (School of Mechanical Engineering, Yeungnam Univ.)
  • 전상우 (영남대학교 기계공학부) ;
  • 응호익롱 (영남대학교 기계공학부) ;
  • 변찬 (영남대학교 기계공학부)
  • Received : 2016.01.04
  • Accepted : 2016.08.16
  • Published : 2016.11.01

Abstract

The printed circuit heat exchanger (PCHE) is regarded as a promising candidate for advanced heat exchangers for the next-generation supercritical $CO_2$ power generation owing to its high compactness and rigid structure. In this study, an innovative type of PCHE, in which the channel sizes for the heat source fluid and heat sink fluid are different, is considered for analysis. The thermal performance of the PCHE, with supercritical $CO_2$ as the working fluid, is numerically analyzed. The results have shown that the thermal performance of the PCHE decreases monotonically when the channel size of either the heat source channel or the heat sink channel, because of the decreased flow velocity. On the other hand, the thermal performance of the PCHE is found to be almost independent of the spacing between the channels. In addition, it was found that the channel cross sectional shape has little effect on the thermal performance when the hydraulic diameter of the channel remains constant.

인쇄기판형 열교환기는 집적도가 높고 구조적으로 견고하여 차세대 초임계 이산화탄소 발전 사이클용 열교환기로 각광받고 있다. 본 논문에서는 열원측과 열침측의 채널 크기가 상이한, 획기적인 형태의 인쇄기판형 열교환기에 대한 수치적 연구 결과를 보고한다. 초임계 이산화탄소를 작동유체로 하는 인쇄기판형 열교환기에 대해서 형상변수에 따른 전열성능을 해석하였으며, 그 결과 열원 혹은 열침측의 채널 직경이 증가함에 따라 유속 감소에 의해 전열성능이 단조적으로 감소하는 것을 확인하였다. 채널간격의 경우 열교환기의 전열성능에 크게 영향을 미치지 않는 것으로 나타났다. 또한 수력직경이 동일할 경우 채널 단면의 모양은 전열성능에 괄목할 만한 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Cho, Y. H., Lee, K. J., Moon, D. J. and Kim, Y. H., 2010, "Numerical Simulation of Thermal Performance of Printed Circuit Heat Exchangers with Microchannels of Different Shapes," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No.1, pp. 61-66. https://doi.org/10.3795/KSME-B.2011.35.1.061
  2. Assefa, K. M. and Kaushal, D. R., 2015, "A Comparative Study of Friction Factor Correlations for High Concentrate Slurry Flow in Smooth Pipes," J. Hydrol. Hydromech., Vol. 63, No. 1, pp. 13-20.
  3. Yeom, C. S., Rhim, D. R. and Lee, J. I., 2014, "Power Generation Technology using Supercritical $CO_2$," KIC News, Vol. 17, No. 1, pp. 51-60.
  4. Tucker, A. S., 1996, "The LMTD Correction Factor for Single-pass Crossflow Heat Exchangers with Both Fluids Unmixed," J. Heat Transfer, Vol. 118, pp. 488-490. https://doi.org/10.1115/1.2825873
  5. Yamagata, K., Nishikawa, K, Hasegawa, S., Fusi, T. and Yoshida, S., 1972, "Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes," J. Heat Mass Transfer, Vol. 15, pp. 2575-2593. https://doi.org/10.1016/0017-9310(72)90148-2
  6. Kim, I. H., No, H. C., Lee, J. I. and Jeon, B. G., 2009, "Thermal Hydraulic Performance Analysis of the Printed Circuit Heat Exchanger using a Helium Test Facility and CFD Simulations," Nuclear Engineering and Design, Vol. 239, pp. 2399-2408. https://doi.org/10.1016/j.nucengdes.2009.07.005
  7. Kim, D. E., Kim, M. H., Cha, J. E. and Kim, S. O., 2008, "Numerical Investigation on Thermal-hydraulic Performance of New Printed Circuit Heat Exchanger Model," Nuclear Engineering and Design, Vol. 238, pp. 3269-3276. https://doi.org/10.1016/j.nucengdes.2008.08.002
  8. Shah, R. K. and London, A. L., 1978, "Laminar Flow Forced Convection in Ducts," Academic Press, pp. 79-152.
  9. Koo, G. W., Lee, S. M., Kim, K. Y., 2014, "Shape Optimization of Inlet Part of a Printed Circuit Heat Exchanger using Surrogate Modeling," Applied Thermal Engineering, Vol. 72, pp. 90-96. https://doi.org/10.1016/j.applthermaleng.2013.12.009