DOI QR코드

DOI QR Code

Effect of hydroxyapatite on critical-sized defect

  • Kim, Ryoe-Woon (Graduate School of Dentistry, Chosun University) ;
  • Kim, Ji-Hyoung (Graduate School of Dentistry, Chosun University) ;
  • Moon, Seong-Yong (Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University)
  • Received : 2016.03.29
  • Accepted : 2016.06.14
  • Published : 2016.12.31

Abstract

Background: Xenologous or synthetic graft materials are commonly used as an alternative for autografts for guided bone regeneration. The purpose of this study was to evaluate effectiveness of carbonate apatite on the critical-size bone defect of rat's calvarium. Methods: Thirty-six critical-size defects were created on 18 adult male Sprague-Dawley rat calvaria under general anesthesia. Calvarial bones were grinded with 8 mm in daimeter bilaterally and then filled with (1) no grafts (control, n = 10 defects), (2) bovine bone mineral (Bio-$Oss^{(R)}$, Geistlich Pharma Ag. Swiss, n = 11 defects), and (3) hydroxyapatite ($Bongros^{(R)}$, Bio@ Inc., Seongnam, Korea, n = 15 defects). At 4 and 8 weeks after surgery, the rats were sacrificed and all samples were processed for histological and histomorphometric analysis. Results: At 4 weeks after surgery, group 3 ($42.90{\pm}9.33%$) showed a significant difference (p < 0.05) compared to the control ($30.50{\pm}6.05%$) and group 2 ($28.53{\pm}8.62%$). At 8 weeks after surgery, group 1 ($50.21{\pm}6.23%$), group 2 ($54.12{\pm}10.54%$), and group 3 ($50.92{\pm}6.05%$) showed no significant difference in the new bone formation. Conclusions: $Bongros^{(R)}$-HA was thought to be the available material for regenerating the new bone formation.

Keywords

References

  1. Buser D, Hoffmann B, Bernard JP et al (1998) Evaluation of filling materials in membrane-protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 9:137-150. doi:10.1034/j.1600-0501.1998.090301.x
  2. Burchardt H (1987) Biology of bone transplantation. Orthop Clin North Am 18:187-196
  3. KURZ LT, GARFIN SR, BOOTH REJ (1989) Harvesting autogenous iliac bone grafts: a review of complications and techniques. Spine 14:1324 https://doi.org/10.1097/00007632-198912000-00009
  4. Suh H (2000) Tissue restoration, tissue engineering and regenerative medicine. Yonsei Medical Journal 41(6):681-684. https://doi.org/10.3349/ymj.2000.41.6.681
  5. Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1:60-68 https://doi.org/10.1097/00001665-199001000-00011
  6. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299
  7. Bosch C, Melsen B, Vargervik K (1998) Importance of the critical-size bone defect in testing bone-regenerating materials. J Craniofac Surg 9:310-316 https://doi.org/10.1097/00001665-199807000-00004
  8. Pryor ME, Polimeni G, Koo K-T et al (2005) Analysis of rat calvaria defects implanted with a platelet-rich plasma preparation: histologic and histometric observations. J Clin Periodontol 32:966-972. doi:10.1111/j.1600-051X.2005.00772.x
  9. Termine JD, Eanes ED, Greenfield DJ et al (1973) Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calcif Tissue Res 12:73-90 https://doi.org/10.1007/BF02013723
  10. Legeros RZ, Trautz OR, Legeros JP et al (1967) Apatite crystallites: effects of carbonate on morphology. Science 155:1409-1411. doi:10.1126/science.155.3768.1409
  11. Uchida A, Araki N, Shinto Y et al (1990) The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg (Br) 72:298-302
  12. Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14:195-200
  13. Mustoe TA, Pierce GF, Thomason A et al (1987) Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta. Science 237:1333-1336. doi:10.1126/science.2442813
  14. Brown GL, Curtsinger LJ, White M et al (1988) Acceleration of tensile strength of incisions treated with EGF and TGF-beta. Ann Surg 208:788-794 https://doi.org/10.1097/00000658-198812000-00019
  15. Handschel J, Wiesmann HP, Stratmann U et al (2002) TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 23:1689-1695 https://doi.org/10.1016/S0142-9612(01)00296-4
  16. Slotte C, Lundgren D (1999) Augmentation of calvarial tissue using nonpermeable silicone domes and bovine bone mineral. An experimental study in the rat. Clin Oral Implants Res 10:468-476 https://doi.org/10.1034/j.1600-0501.1999.100605.x
  17. Donos N, Lang NP, Karoussis IK et al (2004) Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res 15:101-111. doi:10.1111/j.1600-0501.2004.00986.x
  18. Park J-W, Bae S-R, Suh J-Y et al (2008) Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A 87:203-214. doi:10.1002/jbm.a.31768
  19. Bigi A, Cojazzi G, Panzavolta S et al (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68:45-51 https://doi.org/10.1016/S0162-0134(97)00007-X
  20. Gibson IR, Bonfield W (2002) Novel synthesis and characterization of an ABtype carbonate-substituted hydroxyapatite. J Biomed Mater Res 59:697-708 https://doi.org/10.1002/jbm.10044
  21. Nelson DG, Featherstone JD (1982) Preparation, analysis, and characterization of carbonated apatites. Calcif Tissue Int 34(Suppl 2):S69-S81
  22. Hoexter DL (2002) Bone regeneration graft materials. J Oral Implantol 28: 290-294. doi:10.1563/1548-1336(2002)028<0290:BRGM>2.3.CO;2
  23. Schwartz Z, Goldstein M, Raviv E et al (2007) Clinical evaluation of demineralized bone allograft in a hyaluronic acid carrier for sinus lift augmentation in humans: a computed tomography and histomorphometric study. Clin Oral Implants Res 18:204-211. doi:10.1111/j.1600-0501.2006.01303.x
  24. Woodard JR, Hilldore AJ, Lan SK et al (2007) The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28:45-54. doi:10.1016/j.biomaterials.2006.08.021
  25. Hsu YH, Turner IG, Miles AW (2007) Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. J Mater Sci Mater Med 18:2319-2329. doi:10.1007/s10856-007-3136-0
  26. Tencer AF, Woodard PL, Swenson J, Brown KL (1988) Mechanical and bone ingrowth properties of a polymer-coated, porous, synthetic, coralline hydroxyapatite bone-graft material. Ann N Y Acad Sci 523:157-172 https://doi.org/10.1111/j.1749-6632.1988.tb38509.x
  27. Jensen SS, Broggini N, Weibrich G et al (2005) Bone regeneration in standardized bone defects with autografts or bone substitutes in combination with platelet concentrate: a histologic and histomorphometric study in the mandibles of minipigs. Int J Oral Maxillofac Implants 20:703-712
  28. Valentini P, Abensur D, Densari D et al (1998) Histological evaluation of Bio-Oss in a 2-stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implants Res 9:59-64 https://doi.org/10.1034/j.1600-0501.1998.090108.x
  29. Kim DK, Cho TH, Song YM et al (2007) A study about early osteoconductivity of porous alloplastic carbonapatite and anorganic bovine xenograft in canine maixlliary augmentation model. J Korean Assoc Maxillofac Plast Reconstr Surg 29:485-493

Cited by

  1. Effects of Enhanced Hydrophilic Titanium Dioxide-Coated Hydroxyapatite on Bone Regeneration in Rabbit Calvarial Defects vol.19, pp.11, 2016, https://doi.org/10.3390/ijms19113640
  2. Maxillary bone cysts in two horses: Diagnosis and treatment including intralesional formalin injection vol.30, pp.11, 2016, https://doi.org/10.1111/eve.12754
  3. In vivo therapeutic effect of wollastonite and hydroxyapatite on bone defect vol.14, pp.6, 2019, https://doi.org/10.1088/1748-605x/ab4238
  4. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures vol.21, pp.18, 2016, https://doi.org/10.3390/ijms21186942
  5. Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration vol.13, pp.19, 2016, https://doi.org/10.3390/ma13194391
  6. A survey on osteogenic effect of collagen-membrane derived from Rutilus kutum swim bladder in rat calvaria vol.18, pp.1, 2016, https://doi.org/10.4103/1735-3327.321866
  7. Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat Calvaria vol.14, pp.11, 2016, https://doi.org/10.3390/ma14112854