• Title/Summary/Keyword: Xenograft

Search Result 365, Processing Time 0.03 seconds

THE EFFECT OF HYALURONIC ACID ON XENOGRAFT IN RAT CALVARIAL DEFECT (백서 두개부 결손부에 이식된 이종골 치유과정에 히알루론산이 미치는 영향에 관한 연구)

  • Jo, I-Su;Min, Seung-Ki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.205-215
    • /
    • 2002
  • The purpose of this study was to evaluate the tissue response in various bone grafting materials, especially xenogenous bone materials in vivo, compare of bone formation capacity of various bone grafting materials on rat skull defects and evaluate the effect of Hyaluronic acid on healing of human Demineralized Freezed Dried Bone allogenous graft (DFDBA) materials in rat calvarial defects. 30 Sprague-Dawly rats were divided into 4 groups. $7{\times}7mm$ size bony defect were artificially prepared in the calvaria (both parietal bone) of all 30 rats and follwed group grafting of autogenous bone graft on right side and allogenic DFDBA on left side bone graft (rat DFDB) in 15 control group, but in 15 experimental group, xenograft (human DFDB) on left side, hyaluronic acid treated with xenograft on right side. Sequential sacrifices was performed at 1, 2, 4, 6, 8 weeks of experiment. These specimens were stained with H&E and MT stain, and then histologic analysis under light microscope was carried out. There were inflammatory reaction in all graft material during early stage. Autogenous and Allogenous DFDBA graft group observed inflammatory reaction at 1 week. Xenograft group persistant inflammatory reaction until 4 weeks, but in HA treated xenograft group inflammatory reaction was decreased at 2 weeks. Osteoblastic activity in control group was begun at 2 week, xenograft group was delayed at 6 weeks, however HA treated xenograft group was begun at 4 weeks. At 2 week, mild osteoclastic activity were observed in all xenograft group not in concerned to HA, but there was no difference each group after 4 weeks. There are most activated angiogenesis around graft mateirals in xenograft group at 2 weeks, but in HA treated xenograft group, decreased angiogenesis was observed at same time. Bone formation and bone maturation of xenograft group, there was no difference in HA treatment, was less than control group. Fibrosis around xenograft materials were observed until 6 weeks, there was no difference between xenograft and HA treated groups.

Establishment of and Comparison between Orthotopic Xenograft and Subcutaneous Xenograft Models of Gallbladder Carcinoma

  • Du, Qiang;Jiang, Lei;Wang, Xiao-Qian;Pan, Wei;She, Fei-Fei;Chen, Yan-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3747-3752
    • /
    • 2014
  • Background: Gallbladder carcinoma (GBC) is the most common carcinoma of the biliary system. Among its research models, orthotopic xenograft models, important research tools, have been rarely reported in the literature however. Aim: To explore establishment of an orthotopic xenograft model and to evaluate the advantage and disadvantage as compared with other models. Materials and Methods: Subcutaneous xenograft and orthotopic xenograft models of gallbladder carcinoma in nude mice were established and compared with human gallbladder carcinomas. Results: For the orthotopic xenograft model and clinical gallbladder carcinomas, the lymph node metastatic rates were 69.2% and 53.3% (p>0.05); ascites generation rates, 38.5% and 11.7%(p<0.05); liver invasive rates, 100% and 61.7%(p<0.05); and lymphatic vessel densities (LVD), $10.4{\pm}3.02$ and $8.77{\pm}2.92$ (p>0.05), respectively. In the subcutaneous xenograft model, no evidence of ascites generation, lymph node metastasis and liver metastasis were found, and its LVD was lower ($4.56{\pm}1.53$, p<0.05). Conclusions: Compared with the subcutaneous xenograft model, the orthotopic xenograft model better simulates clinical gallbladder carcinoma in terms of metastasis and invasion, which may be attributed to the difference in microenvironment and LVD.

THE EXPERIMENTAL STUDY ON THE HEALING PROCESS OF XENOGRAFT IN THE CRANIUM OF RAT (백서 두개골에서 이종골 이식 후 치유에 관한 실험적 연구)

  • Cho, Yong-Seok;Kim, Kyoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.1
    • /
    • pp.13-22
    • /
    • 1999
  • The purpose of this investigation was to evaluate the acceptability of the collagen-based xenograft ($Laddec^{(R)}$). Full thickness bone defects were prepared in the calvaria of the rats. In the experimental groups the bone defects were filled with a kind of collagen based xenograft. And bone defects, which left without filling, were used as control groups. Sequential sacrifice was performed at the 1st, 2nd, 4th, 8th, and 16th weeks of experiment. 1. At the 1st week of experiment, infiltration of chronic inflammatory cell was observed in all groups. In the experimental group, resorption of the xenograft was initiated. 2. At the 2nd week of experiment, infiltration of chronic inflammatory cells was decreased in all groups. In the experimental group, active resorption of xenograft and new bone formation from the periphery of the xenograft was observed. 3. At the 4th and 8th weeks of experiment, more resorption of the xenograft and new bone formation with calcification was observed in the experimental group. 4. At the 16th week of experiment, small bone trabecula was formed partially in the control group but that couldn't fill the whole bone defect. In the experimental group, more advanced resorption of xenograft and more new bone formation was observed. However mid portion of the xenograft was still remained without resorption. 5. From this experiment, we concluded that the collagen-based xenograft had some osteoconductive but no osteoinductive property. So the xenograft would be used for the bone defect filling material where rapid bone remodeling is not required.

  • PDF

Human Tumor Xenograft Models for Preclinical Assessment of Anticancer Drug Development

  • Jung, Joohee
    • Toxicological Research
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • Xenograft models of human cancer play an important role in the screening and evaluation of candidates for new anticancer agents. The models, which are derived from human tumor cell lines and are classified according to the transplant site, such as ectopic xenograft and orthotopic xenograft, are still utilized to evaluate therapeutic efficacy and toxicity. The metastasis model is modified for the evaluation and prediction of cancer progression. Recently, animal models are made from patient-derived tumor tissue. The patient-derived tumor xenograft models with physiological characters similar to those of patients have been established for personalized medicine. In the discovery of anticancer drugs, standard animal models save time and money and provide evidence to support clinical trials. The current strategy for using xenograft models as an informative tool is introduced.

Comparison of the Genetic Alterations between Primary Colorectal Cancers and Their Corresponding Patient-Derived Xenograft Tissues

  • Yu, Sang Mi;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2018
  • Patient-derived xenograft (PDX) models are useful tools for tumor biology research and testing the efficacy of candidate anticancer drugs targeting the druggable mutations identified in tumor tissue. However, it is still unknown how much of the genetic alterations identified in primary tumors are consistently detected in tumor tissues in the PDX model. In this study, we analyzed the genetic alterations of three primary colorectal cancers (CRCs) and matched xenograft tissues in PDX models using a next-generation sequencing cancer panel. Of the 17 somatic mutations identified from the three CRCs, 14 (82.4%) were consistently identified in both primary and xenograft tumors. The other three mutations identified in the primary tumor were not detected in the xenograft tumor tissue. There was no newly identified mutation in the xenograft tumor tissues. In addition to the somatic mutations, the copy number alteration profiles were also largely consistent between the primary tumor and xenograft tissue. All of these data suggest that the PDX tumor model preserves the majority of the key mutations detected in the primary tumor site. This study provides evidence that the PDX model is useful for testing targeted therapies in the clinical field and research on precision medicine.

8 Years Follow-up of Complications after Maxillary Cyst Enucleation with Xenograft: Case Report (상악골낭종 적출술 후 이식된 이종골지지체의 술 후 8년 감염 증례)

  • Lee, Eun-Young;Kim, Kyoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.425-429
    • /
    • 2011
  • Bone grafts are becoming increasingly common in oral and maxillofacial surgery to improve bone healing procedures. Bovine bone as a xenograft is a representative osteoconductor and space filler; however, sometimes complications, such as infection and wound dehiscence are encountered with its use. We report the result of an eight-year follow-up of a xenograft case and processing methods of inorganic bovine bone along with a review of the literature. Xenograft ($LUBBOC^{(R)}$) was used in a cyst enucleation site of the maxilla, as a bone substitute and space filler. Inflammation and infection were defined several times as lack of osseous contact between the graft and host bone, caused by remodeling failure over an eight-year period. Pathologic findings of the xenograft revealed dead bony trabeculae with inflamed fibrous tissue and actinomycosis.

clinical results of the xenograft cardiac valves (이종심보직판막의 임상적 평가)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.22 no.1
    • /
    • pp.106-115
    • /
    • 1989
  • Clinical results with the xenograft cardiac valves were reviewed for 212 patients who underwent heart valve replacement from January 1981 to December 1987. One hundred and twenty-four Carpentier-Edwards k 88 Ionescu Shiley valves were used. Overall operative mortality was 11 out of 212[5.1%]: 5 out of 153[3.39o] for mitral valve replacement [MVR], 2 out of 34[5.9%] for aortic valve replacement [AVR], 0 out of 4[0%] for Tricuspid valve replacement [TVR], and 4 out of 21[19.1%] for double valve replacement [DVR;MVR+ AVR]. Two hundred and one operative survivors were followed up for a total of 824.3 patient-years [a mean 3.9*1.8 yrs], and the follow up was 78.1%. The linealized complication rates were 0.1% emboli / patient-year, 1.0% endocarditis/ patient-year and 2.2% overall valve failure / patient-year. A linealized rate of primary tissue failure was 0.7*/o/ patient-year. The actuarial survival rates including the operative mortality were 92*2.8% at 4 years and 85*4.3% at 7 years after surgery using the Xenograft cardiac valves. Probabilities of freedom from thromboembolism and overall valve failure were 73*11.0% and 69*2.4% at 7 years after surgery using the Xenograft cardiac valves respectively. The intrinsic durability of the Xenograft cardiac valves appears to be relatively well satisfactory over the long term [4 to 7 years] and the risk of failure appears well balanced by the advantages of a low incidence of thromboembolism and no mandatory anticoagulant therapy.

  • PDF

Histological, Physical Studies after Xenograft of Porcine Ear Cartilage

  • Ryu, Yong Ah;Jin, Meiying;Kang, Nakheon
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.3
    • /
    • pp.155-161
    • /
    • 2017
  • Background: Because of the relatively similar size of organs to human and the physiological and structural similarities, the use of porcine as xenograft donors is progressing very actively. In this study, we analyzed the characteristics of porcine ear cartilage and evaluated its suitability as graft material in reconstructive and cosmetic surgery. Methods: The auricular cartilage was harvested from two pigs, and subjected to histological examination by immunohistochemical staining. To determine the collagen content, samples were treated with collagenase and weight changes were measured. After sterilization by irradiation, the samples were grafted into rats and stained with Hematoxylin and Eosin and Masson Trichrome to observe inflammation and xenograft rejection. Results: In IHC staining, extracellular matrices were mainly stained with type II collagen (20.69%), keratin sulfate (10.20%), chondroitin sulfate (2.62%), and hyaluronic acid (0.84%). After collagenase treatment, the weight decreased by 68.3%, indicating that about 70% of the porcine ear cartilage was composed of collagen. Upon xenograft of the sterilized cartilages in rats, inflammatory cells were observed for up to 2 months. However, they gradually decreased, and inflammation and reject-response were rarely observed at 5 months. Conclusion: The porcine ear cartilage was covered with perichondrium and cellular constituents were found to be composed of chondrocytes and chondroblasts. In addition, the extracellular matrices were mainly composed of collagen. Upon xenograft of irradiated cartilage into rats, there was no specific inflammatory reaction around the transplanted cartilage. These findings suggest that porcine ear cartilage could be a useful alternative implant material for human cosmetic surgery.

Comparison of Efficacy of New Bone Formation According to Implant Treatment in Xenograft Transplanted for Experimental Bone Defects of Rabbits (토끼 실험적 골 결손부에 이식한 이종 이식골편의 처리방법에 따른 신생골 형성능력 비교)

  • Song, Ha-Na;Lee, Jong-Il
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.350-357
    • /
    • 2007
  • Bone graft had been widely investigated for reconstruction of bone defects or acceleration of bone healing in orthopedics, neurosurgery and dental surgery. Autograft is the golden standard of bone graft but it is associated with donor site morbidity and is restricted in quantity. Xenograft has been researched an alternative method for autograft. The purpose of this study was to investigate the efficacy of new bone formation according to three different preparations of implants on rabbit xenograft. Cortical bone xenografts which made from bovine femoral cortical bone were treated by freezing, freeze-drying or defat-freezing implant preparations. They were transplanted into proximal diaphyseal shaft of bifibulae of 15 rabbits which were divided into three groups according to their implant preparation method. The fibulae transplantations were evaluated radiographically and examined osteoblast activity by bone alkaline phosphatase (BALP) biweekly for 16 weeks to observe new bone formation and union of the experimental defected region. New bone formation was observed in 7 cases in freeze-drying and defat-freezing group, respectively. Union of proximal and distal end of defected region, which was considered as success of bone graft, was observed in 4 cases (40%; 4 of 10 cases), respectively. In freezing group, new bone formation was observed in 6 cases but, there is no union observed. BALP value was increased over twice after two weeks of graft procedure in all union cases of freeze-drying and defat-freezing group (two of five animals, respectively) then gradually decreased to 16th week. In non-union cases, there is no significant variation in BALP value. Defat-freezing or freeze-drying preparations of implants are more efficacious in new bone formation than freezing method on rabbit xenograft. While it is difficult to propose which is superior between defat-freezing and freeze-drying, defatting of implants may enhance new bone formation in xenograft.

Periodontal Repair on Intrabony Defects treated with Anorganic Bovine-derived Xeonograft (Bovine-derived Xenograft가 치주 골내낭 치유에 미치는 영향)

  • Kim, Young-Taek;Chae, Gyung-Joon;Jung, Ui-Won;Lee, Yong-Kun;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.489-496
    • /
    • 2007
  • The ultimate goal of periodontal treatment is to regenerate the lost periodontal apparatus. Many studies were performed in developing an ideal bone substitute. Anorganic bovine-derived xenograft is one of the bone substitute, which were studied and have been shown successful for decades. The aim of this study is to evaluate the effect anorganic bovine-derived xenograft. Total of 20 patients, with 10 patients receiving only modified widman flap, and the other 10 receiving anorganic bovine-derived xenograft and flap surgery, were included in the study. Clinical parameters were recorded before surgery and after 6 months. The results are as follows: 1. The test group treated with anorganic bovine-derived xenograft showed reduction in periodontal pocket depth and clinical attachment level with statistically significance(p<0.001) after 6 months. The control group treated with only modified Widman flap showed reduction only in periodontal pocket depth with statistically significance(p<0.001) after 6 months. 2. Although periodontal probing depth change during 6 months did not show any significant differences between the test group and the control group, clinical attachment level gain and re-cession change showed significant differences between the two groups(p<0.05). On the basis of these results, anorganic bovine-derived xenograft improves probing depth and clinical attachment level in periodontal intrabony defects. Anorganic bovine-derived xenograft could be a predictable bone substitute in clinical use.