DOI QR코드

DOI QR Code

음식물류 폐기물의 혐기성 소화 시 식종 방법에 따른 start-up 특성 평가

Evaluation of Characterization During Start-up of Anaerobic Digestion Via Various Seeding Methods

  • 이채영 (수원대학교 토목공학과.하천환경기술연구소) ;
  • 한선기 (한국방송통신대학교 환경보건학과)
  • LEE, CHAE-YOUNG (Dept. of Civil Eng., The University of Suwon, Institute River Environmental Technology) ;
  • HAN, SUN-KEE (Dept. of Environ. Health, Korea National Open University)
  • 투고 : 2016.08.01
  • 심사 : 2016.10.30
  • 발행 : 2016.10.30

초록

This study was performed to evaluate the characteristics of start-up of anaerobic digestion from food waste with different inoculum ratios. The hydrogen yield was similar with different inoculum ratios. The hydrogen production rate increased with increasing inoculum ratio. But the specific hydrogen production rate decreased with increasing inoculum ratio. Total volatile fatty acids composition analysis showed that butyrate and acetate were the prevalent products in all reactors, followed by lactate and propionate. The acetate was most prevalent product in reactors at $X_0/S_0=0.080$ and 0.159. But in reactors at $X_0/S_0=0.239$ and 0.318, butyrate accounted for greater than 50% of the total volatile fatty acids.

키워드

참고문헌

  1. Ministry of Environment, "2013 Waste production and disposal in Korea", 2014, pp.174-324. (2014).
  2. J. M. Choi and C. Y. Lee, "Anaerobic hydrogen fermentation of food waste from garbage disposer", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 5, 2014, pp. 468-474. https://doi.org/10.7316/KHNES.2014.25.5.468
  3. J. M. Choi, "Optimization of hydrogen production from microalgae using anaerobic fermentation", Master dissertation, The Univ. of Suwon, 2012.
  4. D. F. Call, and B. E. Logan, "Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane", Environmental Science and Technology, Vol. 43, 2008, pp. 3401-3406.
  5. L. B. Brentner, J. Peccia, and J. B. Zimmerman, "Challenges in developing biohydrogen as a sustainable energy source: Implications for a research agenda", Environmental Science and Technology, Vol. 44, 2010, pp. 2243-2254. https://doi.org/10.1021/es9030613
  6. X, Gomez, C. Fernandez, J. Fierro, M. E. Sanchez, A. Escapa, and A. Moran, "Hydrogen production: Two stage processes for waste degradation", Bioresource Technology, Vol. 102, 2011, pp. 8621-8627. https://doi.org/10.1016/j.biortech.2011.03.055
  7. H. S. Lee, W. F. Vermaas, and B. E. Rittmann, "Biological hydrogen production: Prospects and challenges", Trends in Biotechnology, Vol. 28, 2010, pp. 262-271. https://doi.org/10.1016/j.tibtech.2010.01.007
  8. F. R. Hawkes, R. Dinsdale, D. L. Hawkes, and I. Hussy "Sustainable fermentative hydrogen production: challenges for process optimization", Int. J. Hydrogen Energy Vol. 27, 2002, pp. 1339-47. https://doi.org/10.1016/S0360-3199(02)00090-3
  9. A. Ghimire, F. Sposito, L. Frunzo, E. Trably, R. Escudie, and F. Pirozzi. "Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass", Waste Manag. Vol. 60, 2016, pp. 55-64.
  10. Y. U. Liu, "Bioenergetic interpretation on the So/Xo ratio in substrate-sufficient batch culture", Vol. 30, 1996, pp. 2766-70. https://doi.org/10.1016/S0043-1354(96)00157-1
  11. H, Argun, and S. Dao, "Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition", International Journal of Hydrogen Energy, 2016, http://dx.doi.org/10.1016/j.ijhydene.2016.06.225
  12. D. H. Kim, S. H. Kim, I. B. Ko, C. Y. Lee, and H. S. Shin, "Start-up strategy for continuous fermentative hydrogen production: Early switchover from batch to continuous operation", Vol. 33, 2008, pp. 1532-1541. https://doi.org/10.1016/j.ijhydene.2008.01.012
  13. APHA-AWWA-WEF, "Standard Methods for the Examination of Water and Wastewater", 18th edition, American Public Health Assoc., Washington, D. C., USA, 2005.
  14. H. Argun, F. Kargi, I. K. Kapdan, and R. Oztekin, "Batch dark fermentation of powdered wheat starch to hydrogen gas: Effects of the initial substrate and biomass concentrations". Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 6109-15. https://doi.org/10.1016/j.ijhydene.2008.08.004
  15. F. Kargi, N. S. Eren, and S. Ozmihci, "Effect of initial bacteria concentration on hydrogen gas production from cheese whey powder solution by thermophilic dark fermentation", Biotechnology Progress, Vol. 28, No. 4, 2012, pp. 931-6. https://doi.org/10.1002/btpr.1558
  16. B. R. Dhar, E. Elbeshbishy, H. Hafez, and H. S. Lee, "Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour. Technol., Vol. 198, 2015, pp. 223-30. https://doi.org/10.1016/j.biortech.2015.08.048
  17. W. M. Alalayah, M. S. Kalil, A. A. H. Kadhum, J. M. Jahim, S. Z. S. Jahim, and N. M. Alauj, "Bio-hydrogen production using a two-stage fermentation process. Pak. J. Biol. Sci. Vol. 12, No. 22, 2009, pp. 1462-7. https://doi.org/10.3923/pjbs.2009.1462.1467
  18. E. Wicher, K. Seifert, R. Zagrodnik, B. Pietrzyk, and M. Laniecki, "Hydrogen gas production from distillery wastewater by dark fermentation". Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 7767-73. https://doi.org/10.1016/j.ijhydene.2013.04.008
  19. D. Das, and T. N. Veziroglu, "Hydrogen production by biological processes: A survey of literature", Int. J. Hydrogen Energy, Vol. 26, pp. 13-28.
  20. D. H. Kim, S. H. Kim and H. S. Shin, "Sodium inhibition of fermentative hydrogen production", Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 3295-304. https://doi.org/10.1016/j.ijhydene.2009.02.051
  21. S. K. Han, J. M. Choi, and C. Y. Lee, "Hydrogen production from microalgae in anaerobic mesophilic and thermophilic conditions", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 4, 2014, pp. 337-43. https://doi.org/10.7316/KHNES.2014.25.4.337