ON θ -MODIFICATIONS OF GENERALIZED TOPOLOGIES VIA HEREDITARY CLASSES

Ahmad Al-Omari, Shyamapada Modak, and Takashi Noiri

ABSTRACT. Let (X, μ) be a generalized topological space (GTS) and \mathcal{H} be a hereditary class on X due to Császár [8]. In this paper, we define an operator $()^{\circ} : \mathcal{P}(X) \to \mathcal{P}(X)$. By setting $c^{\circ}(A) = A \cup A^{\circ}$ for every subset A of X, we define the family $\mu^{\circ} = \{M \subseteq X : X - M = c^{\circ}(X - M)\}$ and show that μ° is a GT on X such that $\mu(\theta) \subseteq \mu^{\circ} \subseteq \mu^{*}$, where μ^{*} is a GT in [8]. Moreover, we define and investigate μ° -codense and strongly μ° -codense hereditary classes.

1. Introduction

Let X be a nonempty set and let $\mathcal{P}(X)$ be the power set of X. Then $\mu \subseteq \mathcal{P}(X)$ is called a generalized topology (briefly GT) [3] on X if $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \mu$. We call the pair (X, μ) a generalized topological space (briefly GTS) on X.

For a GTS (X, μ) , the elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A; and by $i_{\mu}(A)$ the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A.

We recall some notions defined in [8]. Let μ be a GT on nonempty set Xand $\mathcal{P}(X)$ the power set of X. Let us define the collection $\mu(\theta) \subseteq \mathcal{P}(X)$ as follows: $A \in \mu(\theta)$ if and only if for each $x \in A$, there exists $U \in \mu$ such that $x \in U \subseteq c_{\mu}(U) \subseteq A$. Then $\mu(\theta)$ is also a GT included in μ . The elements of $\mu(\theta)$ are called $\mu(\theta)$ -open sets and the complement of a $\mu(\theta)$ -open set is said to be $\mu(\theta)$ -closed. The family of all $\mu(\theta)$ -open subsets of a GTS (X, μ) is denoted by $\mu(\theta)$.

Let (X, μ) be a *GTS* and $A \subseteq X$. Then the notions are defined as follows:

(1) [4] $\gamma_{\theta}(A) = \{x \in X : c_{\mu}(U) \cap A \neq \emptyset \text{ for all } \mu\text{-open set } U \text{ containing } x\}.$ (2) [10] $c_{\theta}(A) = \cap \{F \subseteq X : A \subseteq F, F \text{ is } \mu(\theta)\text{-closed in } X\}.$

Received January 2, 2016.

O2016Korean Mathematical Society

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. generalized topology, hereditary class, $\mu^{\circ}\text{-}\mathrm{codense},$ strongly $\mu^{\circ}\text{-}\mathrm{codense}.$

- (3) [10] $i_{\theta}(A) = \bigcup \{ V \subseteq X : V \subseteq A, V \text{ is } \mu(\theta) \text{-open in } X \}.$
- (4) [10] $\iota_{\theta}(A) = \{x \in X : c_{\mu}(U) \subseteq A \text{ for some } \mu\text{-open set } U \text{ containing } x\}.$

Theorem 1.1 ([8]). Let (X, μ) be a GTS and $A \subseteq X$. Then the following hold:

(1) $i_{\theta}(A) \subseteq \iota_{\theta}(A) \subseteq i_{\mu}(A) \subseteq A \subseteq c_{\mu}(A) \subseteq \gamma_{\theta}(A) \subseteq c_{\theta}(A).$

(2) If A is μ -open, then $c_{\mu}(A) = \gamma_{\theta}(A)$.

Theorem 1.2 ([10]). Let (X, μ) be a GTS and $A \subseteq X$. Then the following hold:

- (1) $\gamma_{\theta}(X A) = X \iota_{\theta}(A).$
- (2) $\iota_{\theta}(X A) = X \gamma_{\theta}(A).$

The idea of hereditary classes was introduced by Császár [6]. A nonempty family $\mathcal{H} \subseteq \mathcal{P}(X)$ is called a hereditary class if it satisfies the following condition: $A \subseteq B, B \in \mathcal{H}$ implies that $A \in \mathcal{H}$. For more details see [1, 2, 9].

2. Properties of the operation A°

In [8], Császár introduced an operator $()^* : \mathcal{P}(X) \to \mathcal{P}(X)$ by using GT μ and a hereditary class \mathcal{H} by $x \in A^* \subseteq X$ if and only if $M \cap A \notin \mathcal{H}$ for every $M \in \mu(x)$. If $x \notin \mathcal{M}_{\mu}$, then by definition $x \in A^*$ where $\mu(x) = \{M \in \mu : x \in M\}$ and $\mathcal{M}_{\mu} = \bigcup \{M \in M\}$.

And, $x \notin A^*$ if and only if there exists $x \in M \in \mu$ such that $M \cap A \in \mathcal{H}$.

Definition 2.1. Let μ be a GT in X and \mathcal{H} a hereditary class on X. For a subset A of X, we define the set $A^{\circ} = \{x \in X : c_{\mu}(M) \cap A \notin \mathcal{H} \text{ for every } M \in \mu(x)\}$ and $x \notin \mathcal{M}_{\mu}$ then by definition $x \in A^{\circ}$.

According to definition, $x \notin A^{\circ}$ if and only if there exists $x \in M \in \mu$ such that $c_{\mu}(M) \cap A \in \mathcal{H}$.

Lemma 2.2. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then $A^* \subseteq A^\circ$ for every subset A of X.

Proof. Let $x \in A^*$. Then, $M \cap A \notin \mathcal{H}$ for every μ -open set M containing x. Since $M \cap A \subseteq c_{\mu}(M) \cap A$, we have $c_{\mu}(M) \cap A \notin \mathcal{H}$ and hence $x \in A^{\circ}$. \Box

Example 2.3. Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a, c\}, \{d\}, \{a, c, d\}\}$, and $\mathcal{H} = \{\phi, \{c\}\}$. Let $A = \{b, c, d\}$. Then $A^{\circ} = \{a, b, c, d\}$ and $A^{*} = \{b, d\}$.

Lemma 2.4. Let μ be a GT in X, \mathcal{H} and \mathcal{J} be two hereditary classes on X. Let A and B be subsets of X. Then the following properties hold:

- (1) If $A \subseteq B$, then $A^{\circ} \subseteq B^{\circ}$.
- (2) If $\mathcal{H} \subseteq \mathcal{J}$, then $A^{\circ}(\mathcal{H}) \supseteq A^{\circ}(\mathcal{J})$.
- (3) $A^{\circ} = c_{\mu}(A^{\circ}) \subseteq \gamma_{\theta}(A)$ and A° is μ -closed.
- (4) If $A \subseteq A^{\circ}$ and A° is μ -open, then $A^{\circ} = \gamma_{\theta}(A)$.
- (5) If $A \subseteq A^{\circ}$ and A is μ -open, then $A^{\circ} = \gamma_{\theta}(A) = c_{\mu}(A)$.

Proof. (1) Suppose that $x \notin B^{\circ}$. Then there exists $M \in \mu(x)$ such that $c_{\mu}(M) \cap B \in \mathcal{H}$. Since $c_{\mu}(M) \cap A \subseteq c_{\mu}(M) \cap B$, $c_{\mu}(M) \cap A \in \mathcal{H}$. Hence $x \notin A^{\circ}$. Thus $X \setminus B^{\circ} \subseteq X \setminus A^{\circ}$ or $A^{\circ} \subseteq B^{\circ}$.

(2) Suppose that $x \notin A^{\circ}(\mathcal{H})$. There exists $M \in \mu(x)$ such that $c_{\mu}(M) \cap A \in \mathcal{H}$. Since $\mathcal{H} \subseteq \mathcal{J}, c_{\mu}(M) \cap A \in \mathcal{J}$ and $x \notin A^{\circ}(\mathcal{J})$. Therefore, $A^{\circ}(\mathcal{J}) \subseteq A^{\circ}(\mathcal{H})$.

(3) We have $A^{\circ} \subseteq c_{\mu}(A^{\circ})$ in general. Let $x \in c_{\mu}(A^{\circ})$. Then $A^{\circ} \cap M \neq \emptyset$ for every $M \in \mu(x)$. Therefore, there exists some $y \in A^{\circ} \cap M$ and $M \in \mu(y)$. Since $y \in A^{\circ}$, $A \cap c_{\mu}(M) \notin \mathcal{H}$ and hence $x \in A^{\circ}$. Hence we have $c_{\mu}(A^{\circ}) \subseteq A^{\circ}$ and hence $A^{\circ} = c_{\mu}(A^{\circ})$, and A° is μ -closed. Again, let $x \in c_{\mu}(A^{\circ}) = A^{\circ}$, then $A \cap c_{\mu}(M) \notin \mathcal{H}$ for every $M \in \mu(x)$. This implies $A \cap c_{\mu}(M) \neq \emptyset$ for every $M \in \mu(x)$. Therefore, $x \in \gamma_{\theta}(A)$. This shows that $A^{\circ} = c_{\mu}(A^{\circ}) \subseteq \gamma_{\theta}(A)$.

(4) For any subset A of X, by (3) we have $A^{\circ} = c_{\mu}(A^{\circ}) \subseteq \gamma_{\theta}(A)$. Since $A \subseteq A^{\circ}, \gamma_{\theta}(A) \subseteq \gamma_{\theta}(A^{\circ}) = c_{\mu}(A^{\circ}) = A^{\circ} \subseteq \gamma_{\theta}(A)$ and hence $A^{\circ} = \gamma_{\theta}(A)$.

(5) For any subset A of X, by (3) we have $A^{\circ} = c_{\mu}(A^{\circ}) \subseteq \gamma_{\theta}(A)$. Since $A \subseteq A^{\circ}, \gamma_{\theta}(A) = c_{\mu}(A) \subseteq c_{\mu}(A^{\circ}) = A^{\circ}$ and hence $A^{\circ} = \gamma_{\theta}(A) = c_{\mu}(A)$. \Box

According to [7], a GT μ is called a quasi-topology (briefly QT) if $M, M' \in \mu$ implies $M \cap M' \in \mu$.

Lemma 2.5. Let μ be a quasi-topology in X and \mathcal{H} a hereditary class on X. If M is $\mu(\theta)$ -open, then $M \cap A^{\circ} = M \cap (M \cap A)^{\circ} \subseteq (M \cap A)^{\circ}$ for any subset A of X.

Proof. Suppose that M be $\mu(\theta)$ -open and $x \in M \cap A^{\circ}$. Then $x \in M$ and $x \in A^{\circ}$. Since $M \in \mu(\theta)$, then there exists $W \in \mu$ such that $x \in W \subseteq c_{\mu}(W) \subseteq M$. Let V be any μ -open set containing x. Then $V \cap W \in \mu(x)$ and $c_{\mu}(V \cap W) \cap A \notin \mathcal{H}$ and hence $c_{\mu}(V) \cap (M \cap A) \notin \mathcal{H}$. This shows that $x \in (M \cap A)^{\circ}$ and hence we obtain $M \cap A^{\circ} \subseteq (M \cap A)^{\circ}$. Moreover, $M \cap A^{\circ} \subseteq M \cap (M \cap A)^{\circ}$ and by Lemma 2.4 $(M \cap A)^{\circ} \subseteq A^{\circ}$ and $M \cap (M \cap A)^{\circ} \subseteq M \cap A^{\circ}$. Therefore, $M \cap A^{\circ} = M \cap (M \cap A)^{\circ}$.

Proposition 2.6. Let μ be a GT in X and \mathcal{H} a hereditary class on X. If $M \in \mu$, $c_{\mu}(M) \cap A \in \mathcal{H}$ imply $M \cap A^{\circ} = \emptyset$. Hence $A^{\circ} = X - \mathcal{M}_{\mu}$ if $A \in \mathcal{H}$.

Proof. Suppose $x \in M \cap A^\circ$, $M \in \mu(x)$ and $x \in A^\circ$ would imply $c_\mu(M) \cap A \notin \mathcal{H}$. Now $A \in \mathcal{H}$ imply $c_\mu(M) \cap A \in \mathcal{H}$ for every $M \in \mu$ and $x \notin A^\circ$ when $x \in \mathcal{M}_\mu$, thus $A^\circ \subseteq X - \mathcal{M}_\mu$ on the other hand we know $X - \mathcal{M}_\mu \subseteq A^\circ$. \Box

Proposition 2.7. Let μ be a GT in X and \mathcal{H} a hereditary class on X. If $A \in \mathcal{H}$, then $i_{\mu}(A^{\circ}) = \emptyset$ and hence $c_{\mu}(X - A^{\circ}) = X$.

Proof. Since $A \in \mathcal{H}$, by Proposition 2.6, $A^{\circ} = X - \mathcal{M}_{\mu}$. Since \mathcal{M}_{μ} is the largest μ -open subset of X, it follows that $i_{\mu}(A^{\circ}) = \emptyset$ and hence $c_{\mu}(X - A^{\circ}) = X$. \Box

Proposition 2.8. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then $A \subseteq X$ implies that $(A \cup A^{\circ})^* \subseteq A^{\circ}$.

Proof. Let $x \notin A^{\circ}$. Then there exists $M \in \mu$ such that $x \in M$ and $c_{\mu}(M) \cap A \in \mathcal{H}$. By Proposition 2.6, $M \cap A^{\circ} = \emptyset$. Hence $M \cap (A \cup A^{\circ}) = M \cap A \in \mathcal{H}$. Therefore, $x \notin (A \cup A^{\circ})^{*}$.

Definition 2.9. Let μ be a GT in X and \mathcal{H} a hereditary class on X. We say the μ is μ° -compatible with a hereditary class \mathcal{H} , denoted $\mu \sim^{\circ} \mathcal{H}$, if the following holds for every $A \subseteq X$: if for every $x \in A$ there exists $M \in \mu(x)$ such that $c_{\mu}(M) \cap A \in \mathcal{H}$, then $A \in \mathcal{H}$.

Theorem 2.10. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ hold.

- (1) $\mu \sim^{\circ} \mathcal{H};$
- (2) If a subset A of X has a cover of μ -open sets each of whose c_{μ} -closure intersection with A is in \mathcal{H} , then $A \in \mathcal{H}$;
- (3) For every $A \subseteq X$, $A \cap A^{\circ} = \emptyset$ implies that $A \in \mathcal{H}$;
- (4) For every $A \subseteq X$, $A A^{\circ} \in \mathcal{H}$.

Proof. (1) \Rightarrow (2): The proof is obvious.

 $(2) \Rightarrow (3)$: Let $A \subseteq X$ and $x \in A$. Then $x \notin A^{\circ}$ and there exists $V_x \in \mu(x)$ such that $c_{\mu}(V_x) \cap A \in \mathcal{H}$. Therefore, we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in \mu(x)$ and by $(2) A \in \mathcal{H}$.

Theorem 2.11. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Let μ be μ° -compatible with a hereditary class \mathcal{H} . If $A \cap A^{\circ} = \emptyset$ for $A \subseteq X$, then

- (1) $A^\circ = X \mathcal{M}_\mu,$
- (2) $(A A^\circ)^\circ = X \mathcal{M}_\mu.$

Proof. We show that (1) holds if μ is μ° -compatible with \mathcal{H} . Let A be any subset of X and $A \cap A^{\circ} = \emptyset$. By Theorem 2.10, $A \in \mathcal{H}$ and by Proposition 2.6 $A^{\circ} = X - \mathcal{M}_{\mu}$.

(2) Let $B = A - A^{\circ}$, then $B \cap B^{\circ} = (A - A^{\circ}) \cap (A - A^{\circ})^{\circ}$ $= (A \cap (X - A^{\circ})) \cap (A \cap (X - A^{\circ}))^{\circ}$ $\subseteq [A \cap (X - A^{\circ})] \cap [A^{\circ} \cap ((X - A^{\circ})^{\circ})] = \emptyset.$

By (1), we have $B^{\circ} = X - \mathcal{M}_{\mu}$. Hence $(A - A^{\circ})^{\circ} = X - \mathcal{M}_{\mu}$.

3. Properties of the operator γ°_{μ}

Definition 3.1. Let μ be a GT in X and \mathcal{H} a hereditary class on X. An operator $\gamma_{\mu}^{\circ} : \mathcal{P}(X) \to \mu$ is defined as follows: for every $A \in X$, $\gamma_{\mu}^{\circ}(A) = \{x \in X : \text{ there exists } M \in \mu(x) \text{ such that } c_{\mu}(M) - A \in \mathcal{H}\}.$

Theorem 3.2. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then $\gamma^{\circ}_{\mu}(A) = X - (X - A)^{\circ}$.

Proof. Suppose $x \in X - (X - A)^{\circ}$. Then $x \notin (X - A)^{\circ}$ and so there exists $M \in \mu(x)$ such that $c_{\mu}(M) \cap (X - A) \in \mathcal{H}$ which implies that $c_{\mu}(M) - A \in \mathcal{H}$. Therefore, $X - (X - A)^{\circ} \subseteq \{x \in X :$ there exists $M \in \mu(x)$ such that $c_{\mu}(M) - A \in \mathcal{H}\} = \gamma_{\mu}^{\circ}(A)$. Conversely, assume that $y \in \gamma_{\mu}^{\circ}(A)$. Then there exists $M \in \mu(y)$ such that $c_{\mu}(M) - A \in \mathcal{H}$. Since $c_{\mu}(M) - A \in \mathcal{H}$, $c_{\mu}(M) \cap (X - A) \in \mathcal{H}$ which implies that $y \notin (X - A)^{\circ}$. Therefore, $y \in X - (X - A)^{\circ}$. Thus, $\gamma_{\mu}^{\circ}(A) = X - (X - A)^{\circ}$.

Let μ be a GT in X and \mathcal{H} a hereditary class. Császár [6] introduced the operator $c^* : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $c^*(A) = A \cup A^*$ for $A \subseteq X$. He showed that there exists a GT μ^* such that $M \in \mu^*$ if and only if $X - M = c^*(X - M)$ and $\mu(\theta) \subseteq \mu \subseteq \mu^*$. Clearly $c^*(A)$ is the intersection of all μ^* -closed supersets of A. Let $i^*(A)$ denote the union of all μ^* -open sets contained in A.

Analogously the operator $c^{\circ} : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $c^{\circ}(A) = A \cup A^{\circ}$ for $A \subseteq X$. Then there exists a GT μ° such that $M \in \mu^{\circ}$ if and only if $X - M = c^{\circ}(X - M)$ and $\mu(\theta) \subseteq \mu^{\circ} \subseteq \mu^{*}$. Clearly $c^{\circ}(A)$ is the intersection of all μ° -closed supersets of A. Let $i^{\circ}(A)$ denote the union of all μ° -open sets contained in A.

Theorem 3.3. Let μ be a GT in X, \mathcal{H} a hereditary class on X and $\mu^{\circ} = \{M \subset X : M = i^{\circ}(M)\} = \{M \subset X : X - M = c^{\circ}(X - M)\}$. Then

- (1) μ° is a GT containing $\mu(\theta)$,
- (2) $\mu^{\circ} \subseteq \mu^*$,
- (3) $\mu^{\circ} = \{A \subseteq X : A \subseteq \gamma^{\circ}_{\mu}(A)\}.$

Proof. (1) If $M \in \mu(\theta)$, $M = i^{\circ}(M)$ and hence $M \in \mu^{\circ}$. Therefore, $\mu(\theta) \subseteq \mu^{\circ}$. Let $M_{\alpha} \in \mu^{\circ}$ for each $\alpha \in \Delta$. Then $M_{\alpha} = i^{\circ}(M_{\alpha}) \subseteq i^{\circ}(\cup M_{\alpha})$ for each $\alpha \in \Delta$. Hence $\cup M_{\alpha} \subseteq i^{\circ}(\cup M_{\alpha})$ and $\cup M_{\alpha} = i^{\circ}(\cup M_{\alpha})$. Therefore, $\cup M_{\alpha} \in \mu^{\circ}$. And μ° is a GT.

(2) Let $M \in \mu^{\circ}$. Then, by Lemma 2.2, $X - M = c^{\circ}(X - M) \supseteq c^{*}(X - M) \supseteq X - M$. Therefore, $X - M = c^{*}(X - M)$ and $M \in \mu^{*}$. Hence $\mu^{\circ} \subseteq \mu^{*}$.

(3) Let $A \subseteq X$ and $A \subseteq \gamma^{\circ}_{\mu}(A)$. By Theorem 3.2, $A \subseteq X - (X - A)^{\circ}$ and $X - A \supseteq (X - A)^{\circ}$. Therefore, $X - A = c^{\circ}(X - A)$ and hence $A \in \mu^{\circ}$. The converse is obvious.

Now we give an example of a set A which is not $\mu(\theta)$ -open but satisfies $A \subseteq \gamma^{\circ}_{\mu}(A)$ i.e μ° -open set.

Example 3.4. Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a, c\}, \{d\}, \{a, c, d\}\}, \text{ and } \mathcal{H} = \{\phi, \{b\}, \{c\}, \{b, c\}, \{a\}\}$ be a hereditary class on X. Let $A = \{a\}$. Then $\gamma_{\mu}^{\circ}(\{a\}) = X - (X - \{a\})^{\circ} = X - (\{b, c, d\})^{\circ} = X - \{b, d\} = \{a, c\}$. Therefore, $A \subseteq \gamma_{\mu}^{\circ}(A)$ and hence A is μ° -open set, but A is not μ -open.

Example 3.5. Let $X = \{a, b, c\}$ with $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$ be a hereditary class on X. We observe that $\{a\}$ is μ -open but it is not μ° open, since $\gamma^{\circ}_{\mu}(\{a\}) = X - (\{b, c\})^{\circ} = X - X = \emptyset$.

By Theorem 3.3 the following relation holds:

Lemma 3.6. Let μ be a GT in X and \mathcal{H} a hereditary class on X. F is μ° -closed if and only if $F^{\circ} \subseteq F$.

Proof. F is μ° -closed if and only if $F = c^{\circ}(F) = F \cup F^{\circ}$ if and only if $F^{\circ} \subseteq$ F.

Corollary 3.7. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then

(1) $U \subseteq \gamma^{\circ}_{\mu}(U)$ for every $U \in \mu^{\circ}$.

(2) $U \subseteq \dot{\gamma_{\mu}^{\circ}}(U)$ for every $U \in \mu(\theta)$.

Proof. (1) If $U \in \mu^{\circ}$, then X - U is μ° -closed. Therefore, $(X - U)^{\circ} \subseteq X - U$ which implies that $X - (X - U) \subseteq X - (X - U)^{\circ}$ and so that $U \subseteq \gamma^{\circ}_{\mu}(U)$. (2) We know that $\gamma^{\circ}_{\mu}(U) = X - (X - U)^{\circ}$. Now $(X - U)^{\circ} \subseteq \gamma_{\theta}(X - U) =$

X-U, since X-U is $\mu(\theta)$ -closed. Therefore, $U = X-(X-U) \subseteq X-(X-U)^{\circ} =$ $\gamma^{\circ}_{\mu}(U).$ \square

Several basic facts concerning the behavior of the operator γ°_{μ} are included in the following theorem.

Theorem 3.8. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the following properties hold:

- (1) If $A \subseteq X$, then $\gamma^{\circ}_{\mu}(A)$ is μ -open.
- (2) If $A \subseteq B$, then $\gamma^{\circ}_{\mu}(A) \subseteq \gamma^{\circ}_{\mu}(B)$.
- (3) If $A, B \subseteq X$, then $\gamma^{\circ}_{\mu}(A \cap B) \subseteq \gamma^{\circ}_{\mu}(A) \cap \gamma^{\circ}_{\mu}(B)$.
- (4) If $A \subseteq X$, then $\gamma^{\circ}_{\mu}(A) = \gamma^{\circ}_{\mu}(\gamma^{\circ}_{\mu}(A))$ if and only if $(X - A)^{\circ} = ((X - A)^{\circ})^{\circ}.$
- (5) $\gamma^{\circ}_{\mu}(X) = X$ (if X is strong) or \mathcal{M}_{μ} (otherwise).
- (6) For $X K \in \mathcal{H}, \gamma^{\circ}_{\mu}(K) = \mathcal{M}_{\mu}.$ (7) $\gamma^{\circ}_{\mu}(\phi) = \mathcal{M}_{\mu} X^{\circ}.$

Proof. (1) This follows from Lemma 2.4(3) and Theorem 3.2.

- (2) This follows from Lemma 2.4(1) and Theorem 3.2.
- (3) This follows from (2).
- (4) This follows from the facts:
- (1) $\gamma_{\mu}^{\circ}(A) = X (X A)^{\circ}.$ (2) $\gamma_{\mu}^{\circ}(\gamma_{\mu}^{\circ}(A)) = X [X (X (X A)^{\circ})]^{\circ} = X ((X A)^{\circ})^{\circ}.$

(5) Since $\phi \in \mathcal{H}$, by Proposition 2.6 we have $\phi^{\circ} = X - \mathcal{M}_{\mu}$. If μ is strong, then $\mathcal{M}_{\mu} = X$, and $\gamma^{\circ}_{\mu}(X) = X - \phi^{\circ} = X - (X - \mathcal{M}_{\mu}) = X$. Otherwise $\gamma^{\circ}_{\mu}(X) = X - \phi^{\circ} = X - (X - \mathcal{M}_{\mu}) = \mathcal{M}_{\mu}.$

(6) For $X - K \in \mathcal{H}$, by Proposition 2.6 $\gamma^{\circ}_{\mu}(K) = X - (X - K)^{\circ} = X - (X - K)^{\circ}$ $\mathcal{M}_{\mu}) = \mathcal{M}_{\mu}.$

(7) By Theorem 3.2 $\gamma^{\circ}_{\mu}(\phi) = X - X^{\circ} = (\mathcal{M}_{\mu} \cup (X - \mathcal{M}_{\mu})) - X^{\circ} = (\mathcal{M}_{\mu} - \mathcal{M}_{\mu})$ $X^{\circ} \cup ((X - \mathcal{M}_{\mu}) - X^{\circ}) = \mathcal{M}_{\mu} - X^{\circ}$, since X° is μ -closed by Lemma 2.4(3) and $X - \mathcal{M}_{\mu}$ is the smallest μ -closed set contained in every μ -closed set.

Theorem 3.9. Let μ be a GT in X and \mathcal{H} a hereditary class on X. If $\sigma =$ $\{A \subseteq X : A \subseteq \gamma^{\circ}_{\mu}(A)\}$. Then σ is a generalized topological space and $\sigma = \mu^{\circ}$.

Proof. Let $A \in \sigma$. Then $A \subseteq \gamma^{\circ}_{\mu}(A) = X - (X - A)^{\circ}$ which implies that $(X-A)^{\circ} \subseteq X-A$. Therefore, X-A is μ° -closed and hence A is μ° -open. Therefore, $\sigma \subseteq \mu^{\circ}$. Conversely, Let $A \in \mu^{\circ}$, then by Corollary 3.7, $A \subseteq \gamma^{\circ}_{\mu}(A)$ and $A \in \sigma$. Therefore, $\mu^{\circ} \subseteq \sigma$. Hence $\sigma = \mu^{\circ}$. Since μ° is a generalized topology, it follows that σ is a generalized topology.

Theorem 3.10. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the following properties hold:

(1) $\gamma_{\mu}^{\circ}(A) = \bigcup \{ M \in \mu : c_{\mu}(M) - A \in \mathcal{H} \}.$ (2) $\gamma_{\mu}^{\circ}(A) = \bigcup \{ M \in \mu : (c_{\mu}(M) - A) \cup (A - c_{\mu}(M)) \in \mathcal{H} \}$ if A is μ -clopen.

Proof. (1) For $x \in X$, $x \in \gamma^{\circ}_{\mu}(A)$ if and only if $x \in X - (X - A)^{\circ}$ if and only if $x \notin (X - A)^{\circ}$ if and only if there exists $M \in \mu$ containing x such that $c_{\mu}(M) \cap (X - A) = c_{\mu}(M) - A \in \mathcal{H}.$

(2) Let $\rho = \bigcup \{ M \in \mu : (c_{\mu}(M) - A) \cup (A - c_{\mu}(M)) \in \mathcal{H} \}$. Since \mathcal{H} is heredity, it is obvious that $\rho \subseteq \bigcup \{M \in \mu : c_{\mu}(M) - A \in \mathcal{H}\} = \gamma_{\mu}^{\circ}(A)$ for every $A \subseteq X$. Conversely, assume A is μ -clopen and $x \in \gamma^{\circ}_{\mu}(A)$. Then there exists $U \in \mu$ such that $x \in U$ and $c_{\mu}(U) - A \in \mathcal{H}$. If $M = U \cup A$, then $M \in \mu, x \in M$ and $c_{\mu}(M) = c_{\mu}(U) \cup A$. Now $(c_{\mu}(M) - A) \cup (A - c_{\mu}(M)) = (c_{\mu}(U) - A) \cup \emptyset =$ $c_{\mu}(U) - A \in \mathcal{H}$ implies that $(c_{\mu}(M) - A) \cup (A - c_{\mu}(M)) \in \mathcal{H}$ and hence $x \in \rho$. Therefore, $\gamma^{\circ}_{\mu}(A) \subseteq \rho$. Hence $\gamma^{\circ}_{\mu}(A) = \rho$.

Theorem 3.11. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then for $A \subseteq X$, $\iota_{\theta}(A) \subseteq \gamma^{\circ}_{\mu}(A)$.

Proof. Let $x \in \iota_{\theta}(A)$, then there exists $M \in \mu$ containing x such that $c_{\mu}(M) \subseteq I$ A. This implies that $c_{\mu}(M) - A = \phi \in \mathcal{H}$ and hence by Definition 3.1 $x \in$ $\gamma^{\circ}_{\mu}(A).$

The reverse inclusion of the above theorem may not hold as shown in the next example.

Example 3.12. Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a, c\}, \{d\}, \{a, c, d\}\}, \text{ and } \mathcal{H} = \{\emptyset, \{a, c\}, \{d\}, \{a, c, d\}\}, \{a, c, d\}\}$ $\{\phi, \{b\}, \{c\}, \{b, c\}, \{a\}\}\$ be a hereditary class on X. Let $A = \{a\}$. Then $\gamma^{\circ}_{\mu}(\{a\}) = X - (X - \{a\})^{\circ} = X - (\{b, c, d\})^{\circ} = X - \{b, d\} = \{a, c\}$ and $\iota_{\theta}(A) = \emptyset$, hence $\gamma^{\circ}_{\mu}(A) \nsubseteq \iota_{\theta}(A)$.

Lemma 3.13. Let μ be a GT in X and \mathcal{H} a hereditary class on X. For $A \subseteq X$, (1) $i^{\circ}(A) = X - c^{\circ}(X - A).$

(2)
$$c^{\circ}(A) = X - i^{\circ}(X - A).$$

Proposition 3.14. Let μ be a GT in X and \mathcal{H} a hereditary class on X. For $A \subseteq X$,

(1) $\iota_{\theta}(A) \subseteq i^{\circ}(A) \subseteq \gamma_{\mu}^{\circ}(A).$ (2) $A^{\circ} \subseteq c^{\circ}(A) \subseteq \gamma_{\theta}(A).$

Proof. Since the GT μ° is finer than $\mu(\theta)$, obviously $\iota_{\theta}(A) \subseteq i^{\circ}(A)$ and $c^{\circ}(A) \subseteq \gamma_{\theta}(A)$. And from $c^{\circ}(A) = A \cup A^{\circ}$, obviously $A^{\circ} \subseteq c^{\circ}(A)$. Let $x \in i^{\circ}(A)$, there exists a μ° -open set G containing x such that $G \subseteq A$. Hence there exists $c_{\mu}(M) - H \subseteq G$ such that $M \in \mu$ and $H \in \mathcal{H}$. Since $c_{\mu}(M) - A \subseteq H$, then $c_{\mu}(M) - A \in \mathcal{H}$. This implies $x \notin (X - A)^{\circ}$ and hence $x \in \gamma^{\circ}_{\mu}(A)$.

Theorem 3.15. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then $\mu \sim^{\circ} \mathcal{H}$ if and only if $\gamma_{\mu}^{\circ}(A) - A \in \mathcal{H}$ for every $A \subseteq X$.

Proof. Necessity. Assume $\mu \sim^{\circ} \mathcal{H}$ and let $A \subseteq X$. Observe that $x \in \gamma_{\mu}^{\circ}(A) - A$ if and only if $x \notin A$ and $x \notin (X - A)^{\circ}$ if and only if $x \notin A$ and there exists $U_x \in \mu(x)$ such that $c_{\mu}(U_x) - A \in \mathcal{H}$ if and only if there exists $U_x \in \mu(x)$ such that $x \in c_{\mu}(U_x) - A \in \mathcal{H}$. Now, for each $x \in \gamma_{\mu}^{\circ}(A) - A$ and $U_x \in \mu(x)$, $c_{\mu}(U_x) \cap (\gamma_{\mu}^{\circ}(A) - A) \in \mathcal{H}$ by heredity and hence $\gamma_{\mu}^{\circ}(A) - A \in \mathcal{H}$ by assumption that $\mu \sim^{\circ} \mathcal{H}$.

Sufficiency. Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \mu(x)$ such that $c_{\mu}(U_x) \cap A \in \mathcal{H}$. Observe that $\gamma^{\circ}_{\mu}(X-A) - (X-A) = A - A^{\circ} = \{x : \text{there exists } U_x \in \mu(x) \text{ such that } x \in c_{\mu}(U_x) \cap A \in \mathcal{H}\}$. Thus we have $A \subseteq \gamma^{\circ}_{\mu}(X-A) - (X-A) \in \mathcal{H}$ and hence $A \in \mathcal{H}$ by heredity of \mathcal{H} . \Box

Proposition 3.16. Let μ be a GT in X and \mathcal{H} a hereditary class on X with $\mu \sim^{\circ} \mathcal{H}, A \subseteq X$. If N is a nonempty μ -open subset of $A^{\circ} \cap \gamma_{\mu}^{\circ}(A)$, then $N - A \in \mathcal{H}$ and $c_{\mu}(N) \cap A \notin \mathcal{H}$.

Proof. If $N \in \mu - \{\emptyset\}$ and $N \subseteq A^{\circ} \cap \gamma_{\mu}^{\circ}(A)$, then $N - A \subseteq \gamma_{\mu}^{\circ}(A) - A \in \mathcal{H}$ by Theorem 3.15 and hence $N - A \in \mathcal{H}$ by heredity. Since $N \in \mu - \{\emptyset\}$ and $N \subseteq A^{\circ}$, we have $c_{\mu}(N) \cap A \notin \mathcal{H}$ by the definition of A° . \Box

4. μ° -codense

Proposition 4.1. Let μ be a GT in X and \mathcal{H} a hereditary class on X. $X = X^{\circ}$ if and only if $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$, where $c_{\mu}(\mu) = \{c_{\mu}(V) : V \in \mu\}$.

Proof. Assume $X = X^{\circ}$. Then $M \in \mu$, $M \neq \emptyset$ would imply the existence of $x \in M$ and $x \in X^{\circ}$ would furnish $c_{\mu}(M) \cap X = c_{\mu}(M) \notin \mathcal{H}$ so that $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$. Conversely, $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$ implies $c_{\mu}(M) = c_{\mu}(M) \cap X \notin \mathcal{H}$ whenever $x \in M \in \mu$ so that $x \in X^{\circ}$ for $x \in X$. Hence $X = X^{\circ}$. \Box

Theorem 4.2. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the implications $(1) \Rightarrow (2)$ and $(3) \Rightarrow (4) \Rightarrow (1)$ hold. If μ is a quasi-topology in X, then the following properties are equivalent:

- (1) $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset;$
- (2) If $H \in \mathcal{H}$, then $\iota_{\theta}(H) = \emptyset$;
- (3) For every μ -clopen $G, G \subseteq G^{\circ}$;
- (4) $X = X^{\circ}$.

Proof. (1) \Rightarrow (2): Let $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$ and $H \in \mathcal{H}$. Suppose that $x \in \iota_{\theta}(H)$. Then there exists $M \in \mu$ such that $x \in M \subseteq c_{\mu}(M) \subseteq H$. Since $H \in \mathcal{H}$ and hence $\emptyset \neq \{x\} \subseteq c_{\mu}(M) \in c_{\mu}(\mu) \cap \mathcal{H}$. This is contrary that $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$. Therefore, $\iota_{\theta}(H) = \emptyset$.

(2) \Rightarrow (3): Let G be μ -clopen and $x \in G$. Assume $x \notin G^{\circ}$ then there exists $M_x \in \mu(x)$ such that $G \cap c_\mu(M_x) \in \mathcal{H}$ and hence $G \cap M_x \in \mathcal{H}$. By (2), $x \in G \cap M_x = i_\mu(G \cap M_x) \subseteq i_\mu(G \cap c_\mu(M_x)) = \iota_\theta(G \cap c_\mu(M_x)) = \emptyset$. This is a contradiction. Hence $x \in G^{\circ}$ and $G \subseteq G^{\circ}$.

- (3) \Rightarrow (4): Since X is μ -clopen, then $X = X^{\circ}$.
- (4) \Leftrightarrow (1): This is obvious by Proposition 4.1.

Proposition 4.3. Let μ be a GT in X and \mathcal{H} a hereditary class on X. $M \in \mu$ implies $M \subseteq M^{\circ}$ if and only if $N, M \in \mu$, $c_{\mu}(N) \cap M \in \mathcal{H}$ implies $N \cap M = \emptyset$.

Proof. Assume $M \subseteq M^{\circ}$ whenever $M \in \mu$. If $x \in M \cap N$ and $M, N \in \mu$, then $x \in M^{\circ}$, hence $c_{\mu}(N) \cap M \notin \mathcal{H}$. Consequently $M, N \in \mu$ and $c_{\mu}(N) \cap M \in \mathcal{H}$ implies $M \cap N = \emptyset$. Conversely, if the latter statement is true and $x \in M \in \mu$, then $x \in N \in \mu$ implies $M \cap N \neq \emptyset$. Hence $c_{\mu}(N) \cap M \notin \mathcal{H}$, so that $x \in M^{\circ}$. Therefore, $M \subseteq M^{\circ}$ whenever $M \in \mu$. П

Definition 4.4. Let μ be a *GT* in *X*. A hereditary class \mathcal{H} on *X* is said to be (1) μ° -codense if $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$,

(2) strongly μ° -codense if $N, M \in \mu, c_{\mu}(N) \cap M \in \mathcal{H}$ implies $N \cap M = \emptyset$.

Lemma 4.5. Let μ be a GT in X and \mathcal{H} a hereditary class on X. $\gamma^{\circ}_{\mu}(\emptyset) = \emptyset$ if and only if a hereditary class \mathcal{H} is μ° -codense.

Proof. Since $\gamma^{\circ}_{\mu}(\phi) = X - X^{\circ}, \ \gamma^{\circ}_{\mu}(\emptyset) = \emptyset$ if and only if $X = X^{\circ}$ and hence by Theorem 4.2(4), $\gamma^{\circ}_{\mu}(\emptyset) = \emptyset$ if and only if a hereditary class \mathcal{H} is μ° -codense. \Box

Proposition 4.6. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the following are equivalent.

- (1) \mathcal{H} is μ° -codense.
- (2) $\mathcal{M}^{\circ}_{\mu} = X.$ (3) $\gamma^{\circ}_{\mu}(X \mathcal{M}_{\mu}) = \emptyset.$

Proof. (1) \Leftrightarrow (2). Suppose $x \in X$ and $x \notin \mathcal{M}^{\circ}_{\mu}$. Then there exists $M \in \mu$ such that $x \in M$ and $c_{\mu}(M) \cap \mathcal{M}_{\mu} \in \mathcal{H}$ which implies that $c_{\mu}(M) \in \mathcal{H}$ and hence $c_{\mu}(M) = \phi$ since \mathcal{H} is μ° -codense which is a contradiction. Therefore, $x \in \mathcal{M}^{\circ}_{\mu}$. Hence $\mathcal{M}^{\circ}_{\mu} = X$. Conversely, suppose $c_{\mu}(M) \in c_{\mu}(\mu) \cap \mathcal{H}, M \in \mu$. If $M \neq \emptyset$, then there exists $x \in M$ and hence $x \in \mathcal{M}^{\circ}_{\mu}$ which implies that $c_{\mu}(M) \cap \mathcal{M}_{\mu} = c_{\mu}(M) \notin \mathcal{H}$, a contradiction. Therefore, $c_{\mu}(\mu) \cap \mathcal{H} = \emptyset$.

865

(2) \Leftrightarrow (3). It is obvious from $\gamma_{\mu}^{\circ}(X - \mathcal{M}_{\mu}) = X - (X - (X - \mathcal{M}_{\mu}))^{\circ} = X - \mathcal{M}_{\mu}^{\circ}$. Hence (2) and (3) are equivalent.

Theorem 4.7. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the following are equivalent.

- (1) \mathcal{H} is strongly μ° -codense;
- (2) $M \subseteq M^{\circ}$ for every $M \in \mu$;
- (3) $S \subseteq S^{\circ}$ for every $S \in \sigma(\mu)$, where $\sigma(\mu) = \{A \subset X : A \subset c_{\mu}(i_{\mu}(A))\}$ [5];
- (4) $\gamma_{\theta}(M) = M^{\circ}$ for every $M \in \mu$;
- (5) $c_{\mu}(S) \subseteq S^{\circ}$ for every $S \in \sigma(\mu)$.

Proof. (1) and (2) are equivalent by the definition of strongly μ° -codense.

(2) \Rightarrow (3). Suppose $M \subseteq M^{\circ}$ for every $M \in \mu$. Let $S \in \sigma(\mu)$. Then there exists a μ -open set M such that $M \subseteq S \subseteq c_{\mu}(M) = \gamma_{\theta}(M)$. Now $S \subseteq \gamma_{\theta}(M) = M^{\circ}$ by Lemma 2.4(5) and hence $S \subseteq M^{\circ} \subseteq S^{\circ}$.

(3) \Rightarrow (4). It follows from the fact that $\mu \subseteq \sigma(\mu)$ and Lemma 2.4.

 $(4) \Rightarrow (5)$. Let $S \in \sigma(\mu)$. Then there exists a μ -open set M such that $M \subseteq S \subseteq c_{\mu}(M) = \gamma_{\theta}(M) = M^{\circ}$, also we have $M^{\circ} \subseteq S^{\circ}$ and hence $c_{\mu}(S) \subseteq c_{\mu}(M) \subseteq S^{\circ}$.

(5)
$$\Rightarrow$$
 (2). It follows from the fact that $\mu \subseteq \sigma(\mu)$.

Theorem 4.8. Let μ be a GT in X and \mathcal{H} a hereditary class on X. Then the following are equivalent.

- (1) \mathcal{H} is strongly μ° -codense;
- (2) If A is $\sigma(\mu)$ -closed, then $\gamma^{\circ}_{\mu}(A) \subseteq A$;
- (3) $\gamma^{\circ}_{\mu}(c_{\mu}(A)) \subseteq i_{\mu}(c_{\mu}(A))$ for every $A \subseteq X$;
- (4) $\gamma^{\circ}_{\mu}(A) \subseteq i_{\mu}(A)$ for every μ -closed set A.

Proof. (1) \Rightarrow (2). Suppose A is $\sigma(\mu)$ -closed. By Theorem 4.7(3), $X - A \subseteq (X - A)^{\circ}$. Therefore, $X - (X - A)^{\circ} \subseteq A$ which implies that $\gamma_{\mu}^{\circ}(A) \subseteq A$.

 $(2) \Rightarrow (1)$. If $A \in \sigma(\mu)$, then X - A is $\sigma(\mu)$ -closed. Therefore, by (2) $\gamma^{\circ}_{\mu}(X - A) \subseteq X - A$ and hence $A \subseteq A^{\circ}$ for every $A \in \sigma(\mu)$. Hence by Theorem 4.7 we have \mathcal{H} is strongly μ° -codense.

(1) \Rightarrow (3). If $A \subseteq X$, $\gamma_{\mu}^{\circ}(c_{\mu}(A)) = X - (X - c_{\mu}(A))^{\circ} = X - \gamma_{\theta}(X - c_{\mu}(A))$ by Theorem 4.7(4) and hence $\gamma_{\mu}^{\circ}(c_{\mu}(A)) = \iota_{\theta}(c_{\mu}(A)) \subseteq i_{\mu}(c_{\mu}(A)).$

(3) \Rightarrow (2). If A is $\sigma(\mu)$ -closed, then by (3) we have $\gamma_{\mu}^{\circ}(c_{\mu}(A)) \subseteq i_{\mu}(c_{\mu}(A)) \subseteq A$. A. Since γ_{μ}° is monotonic, it follows that $\gamma_{\mu}^{\circ}(A) \subseteq \gamma_{\mu}^{\circ}(c_{\mu}(A)) \subseteq A$. (3) \Leftrightarrow (4). It is clear.

(3) \Leftrightarrow (4). It is clear. \Box Definition 4.9. Let μ be a GT in X and \mathcal{H} a hereditary class on X. A

benintion 4.9. Let μ be a GT in X and \mathcal{H} a hereditary class on X. A hereditary class \mathcal{H} is said to be *-strongly μ° -codense if for $M, N \in \mu$, $(c_{\mu}(M) \cap N) \cap A \in \mathcal{H}$ and $(c_{\mu}(M) \cap N) - A \in \mathcal{H}$ implies $M \cap N = \emptyset$.

Lemma 4.10. Let μ be a GT on X. Let a hereditary class \mathcal{H} be *-strongly μ° -codense. Then

- (1) $X = X^{\circ};$
- (2) \mathcal{H} is strongly μ° -codense.

Proof. (1) If $X - X^{\circ} \neq \emptyset$, then for some $x \in X - X^{\circ}$, there exists a nonempty μ open set M containing x such that $c_{\mu}(M) \cap X \in \mathcal{H}$. Since $c_{\mu}(M) - X = \emptyset \in \mathcal{H}$,
since \mathcal{H} is *-strongly μ° -codense, then $M = \emptyset$. It is a contradiction, and hence $X = X^{\circ}$. Hence \mathcal{H} is μ° -codense.

(2) For $M, N \in \mu$, if $(c_{\mu}(M) \cap N) \in \mathcal{H}$, then $(c_{\mu}(M) \cap N) \cap \emptyset \in \mathcal{H}$ and $(c_{\mu}(M) \cap N) - \emptyset \in \mathcal{H}$ and by hypothesis, $M \cap N = \emptyset$ and hence \mathcal{H} is strongly μ° -codense.

Theorem 4.11. Let μ be a GT on X. Let a hereditary class \mathcal{H} be *-strongly μ° -codense. Then $\gamma^{\circ}_{\mu}(A) \subseteq A^{\circ} \subseteq \gamma_{\theta}(A)$.

Proof. Suppose there exists an element $x \in \gamma^{\circ}_{\mu}(A)$ such that $x \notin A^{\circ}$. For $x \in \gamma^{\circ}_{\mu}(A)$, since $x \notin (X - A)^{\circ}$, there exists a μ -open set M containing x such that $c_{\mu}(M) \cap (X - A) \in \mathcal{H}$. For $x \notin A^{\circ}$, there exists a μ -open set N containing x such that $c_{\mu}(N) \cap A \in \mathcal{H}$. For $x \notin A^{\circ}$, there exists a μ -open set N is satisfies $(c_{\mu}(M) \cap N) \cap A \in \mathcal{H}$ and $(c_{\mu}(M) \cap N) \cap (X - A) \in \mathcal{H}$. Since \mathcal{H} is *-strongly μ° -codense, $M \cap N = \emptyset$. But this contradicts the fact that both M and N containing x. Hence we have $\gamma^{\circ}_{\mu}(A) \subseteq A^{\circ}$ and by Lemma 2.4 $\gamma^{\circ}_{\mu}(A) \subseteq A^{\circ} \subseteq \gamma_{\theta}(A)$.

Theorem 4.12. Let μ be a GT on X. Let a hereditary class \mathcal{H} be *-strongly μ° -codense. Then $\gamma^{\circ}_{\mu}(A) \cap \gamma^{\circ}_{\mu}(X - A) = \emptyset$.

Proof. Assume that $z \in \gamma_{\mu}^{\circ}(A) \cap \gamma_{\mu}^{\circ}(X - A)$ for some $z \in X$, then there exist μ open sets M, N containing z such that $c_{\mu}(M) - A \in \mathcal{H}$ and $c_{\mu}(N) \cap (X - A) \in$ \mathcal{H} . Hence $(c_{\mu}(M) \cap N) - A \in \mathcal{H}$ and $(c_{\mu}(M) \cap N) \cap A \in \mathcal{H}$, since \mathcal{H} is \ast strongly μ° -codense, we have $M \cap N = \emptyset$. This is a contradiction. Hence $\gamma_{\mu}^{\circ}(A) \cap \gamma_{\mu}^{\circ}(X - A) = \emptyset$.

Corollary 4.13. Let μ be a GT on X. Let a hereditary class \mathcal{H} be *-strongly μ° -codense. Then $A^{\circ} \cup (X - A)^{\circ} = X$.

Theorem 4.14. Let μ be a GT on X. Let a hereditary class \mathcal{H} be *-strongly μ° -codense. For $A \subseteq X$, then

- (1) $\gamma^{\circ}_{\mu}(A) \subseteq i_{\mu}(A^{\circ}) \subseteq i_{\mu}(\gamma_{\theta}(A)).$
- (2) For a μ° -closed set $A \subseteq X$, $\gamma^{\circ}_{\mu}(A) \subseteq A^{\circ} \subseteq A$.
- (3) If $A = i_{\mu}(\gamma_{\theta}(A))$, then $\gamma_{\mu}^{\circ}(A) \subseteq A$.
- (4) If $A \in \mathcal{H}$, then $\gamma^{\circ}_{\mu}(A) = \phi$.
- (5) If $X A \in \mathcal{H}$, then $A^{\circ} = X$.

Proof. (1), (2) It is obvious.

(3) It is obvious from (1).

(4) It follows from Theorem 3.2, Corollary 4.13 and Proposition 2.6 that $\gamma^{\circ}_{\mu}(A) = X - (X - A)^{\circ} \subseteq A^{\circ} = X - \mathcal{M}_{\mu}$. But from the fact that \mathcal{M}_{μ} is the union of all μ -open sets and $\gamma^{\circ}_{\mu}(A)$ is a μ -open set, $\gamma^{\circ}_{\mu}(A) = \emptyset$.

(5) By (4) $\gamma^{\circ}_{\mu}(X-A) = \emptyset$ and by Theorem 3.2, $\gamma^{\circ}_{\mu}(X-A) = X - A^{\circ}$. Hence $A^{\circ} = X.$

References

- [1] A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math. 43 (2013), no. 2, 139-149.
- _____, Weak and strong forms of sT-continuous functions, Commun. Korean Math. [2]Soc. 30 (2015), no. 4, 493–504.
- [3] Á, Császár, Generalized open sets, Acta Math. Hungar. 75 (1997), no. 1-2, 65-87.
- ____, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), [4] _ no. 4, 351-357.
- ____, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005), [5]_____ no. 1-2, 53-66.
- [6]_____, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), no. 1-2, 29-36.
- ____, Remark on quasi-topologies, Acta Math. Hungar. 119 (2008), no. 1-2, 197–200. [7]
-, δ -, and θ -modifications of generalized topologies, Acta Math. Hungar. 120 [8] (2008), no. 3, 275-279.
- [9] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), no. 4, 295-310.
- [10] W. K. Min, A note on $\theta(g, g')$ -continuity in generalized topologies, Acta Math. Hungar. 125 (2009), no. 4, 387-393.

Ahmad Al-Omari DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES AL AL-BAYT UNIVERSITY P.O. Box 130095, MAFRAQ 25113, JORDAN $E\text{-}mail\ address:\ \texttt{omarimutah1@yahoo.com}$

Shyamapada Modak DEPARTMENT OF MATHEMATICS UNIVERSITY OF GOUR BANGA P.O. Mokdumpur, 732 103, Malda E-mail address: spmodak2000@yahoo.co.in

TAKASHI NOIRI

2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan E-mail address: t.noiri@nifty.com