DOI QR코드

DOI QR Code

Study on applicability of fractal theory to cohesive sediment in small rivers

프랙탈 이론의 소하천 점착성 유사 적용에 관한 연구

  • Lim, Byung Gu (Geum-River Environment Research Center) ;
  • Son, Minwoo (Dept. of Civil Eng., Chungnam National University)
  • 임병구 (금강물환경연구소) ;
  • 손민우 (충남대학교 공과대학 토목공학과)
  • Received : 2016.07.21
  • Accepted : 2016.09.20
  • Published : 2016.10.31

Abstract

Cohesive sediments form flocs through the flocculation process. The size and density of floc are variable whereas those of a fine sediment are always assumed to be constant. The settling velocity, one of main factors of sediment transport, is determined by size and density of particle. Therefore, the flocculation process plays an important role in transport of cohesive sediment. It is of great difficulty to directly measure the density of floc in the field due to technical limitation at present. It is a popular approach to estimate the density of floc by applying the fractal theory. The main assumption of fractal theory is the self-similarity. This study aims to examine the applicability of fractal theory to cohesive sediment in small rivers of Korea. Sampling sediment has been conducted in two different basins of Geum river and Yeongsan river. The results of settling experiments using commercial camera show that the sediment in Geum river basin follows the main concept of fractal theory whereas the sediment in Yeongsan river basin does not have a clear relationship between floc size and fractal dimension. It is known from this finding that the fractal theory is not easily applicable under the condition that the cohesive sediment includes the high content of organic matter.

점착성 유사는 작은 1차 입자가 단독으로 거동하는 것이 아니라 크기와 밀도를 변화시키는 응집현상을 통해 서로 뭉쳐진 플럭의 형태로 이동하게 된다. 유사의 거동에 매우 중요한 영향을 주는 침강속도는 유사의 크기와 밀도에 의해 결정되므로 응집현상이 점착성 유사에 주는 영향은 매우 크다고 할 수 있다. 플럭의 밀도는 직접 측정이 어려우므로 프랙탈 이론을 적용하여 추정하는 것이 현재까지 일반적인 모형화의 과정이다. 하지만 프랙탈 이론은 플럭이 자기유사성을 가진다는 가정 하에 적용되는 것이므로 이에 대한 검토가 필요하다. 본 연구는 우리나라 하천 중 점착성 유사가 우세할 것으로 예상되는 금강 및 영산강 유역에서 시료를 채취하고 상업용 카메라를 이용한 침강실험을 통해 프랙탈 이론의 적용 가능성, 플럭의 특성 등을 검토하는 목적으로 수행되었다. 연구의 결과, 금강 유역의 점착성 유사는 프랙탈 이론의 적용이 가능할 것으로 판단되지만 영산강 유역의 유사에서는 크기와 프랙탈 차원의 명확한 상관성을 확인하기 어려웠다. 영산강 유역의 유사는 유기물이 높은 함량으로 포함되어있다. 따라서 1차 입자 하나하나가 응집되며 자기유사성을 가진다는 프랙탈 이론의 기본 가정과는 거리가 있는 것으로 생각된다.

Keywords

References

  1. Coletta, T. F., Bruell, C. J., Ryan, D. K., and Inyang, H. I. (1997). "Cation-enhanced solutions for the electrokinetic removal of Pb from kaolinite." Journal of Environment, Vol. 123, No. 12, pp. 1227-1233.
  2. Dyer, K. R. (1989). "Sediment processes in estuaries: future research requirements." Journal of Geophysical Research, Vol. 94, No. C10, pp. 14327-14339. https://doi.org/10.1029/JC094iC10p14327
  3. Dyer, K. R. (1997). Estuaries: A Physical Introduction, Second ed., Wiley & Sons Ltd., Chichester.
  4. Eisma, D. (1986). "Flocculation and de-flocculation of suspended matter in estuaries." Netherlands Journal of Sea Research, Vol. 20, No. 2-3, pp. 183-199. https://doi.org/10.1016/0077-7579(86)90041-4
  5. Eisma, D., Schuhmacher, T., Boekel, H., van Heerwaarden, J., Franken, H., Laan, M., Vaars, A., Eijgenraam, F., and Kalf, J. (1990). "A camera and image-analysis system for in situ observation of flocs in natural water." Netherlands Journal of Sea Research, Vol. 27, No. 1, pp. 43-56. https://doi.org/10.1016/0077-7579(90)90033-D
  6. Gibbs, R. J. (1982). "Floc stability during Coulter counter size analysis." Journal of Sedimentary Petrology, Vol. 52, No. 2, pp. 657-660. https://doi.org/10.1306/212F7FE5-2B24-11D7-8648000102C1865D
  7. Han, M., Kim, T.-I., and Kim, J. (2006). "Application of image analysis evaluate the flocculation process." Journal of Water Supply: Research and Technology-AQUA, Vol. 55, No. 7-8, pp. 453-459. https://doi.org/10.2166/aqua.2006.053
  8. Hill, P. S., Voulgaris, G., and Trowbrige, J. H. (2001). "Controls on floc size in a continental shelf bottom boundary layer." Journal of Geophysical Research, Vol. 106, No. C5, pp. 9543-9549. https://doi.org/10.1029/2000JC900102
  9. Hwang, K.-N. (2000). "An experimental study on settling velocity of Saemankeum muddy sediments." Journal of the Korean Society of Civil Engineering, Vol. 20, No. 2B, pp. 277-286.
  10. Khelifa, A., and Hill, P. S. (2006). "Models for effective density and settling velocity of flocs." Journal of Hydraulics Research, Vol. 44, No. 3, pp. 390-401. https://doi.org/10.1080/00221686.2006.9521690
  11. Kranenburg, C. (1994). "The fractal structure of cohesive sediment aggregates." Estuarine Coastal Shlef Science, Vol. 39, No. 6, pp. 451-460. https://doi.org/10.1016/S0272-7714(06)80002-8
  12. Lee, S. C. (1995). Response of Mud Shore Profiles to Waves. Ph.D. Dissertation, University of Florida, Gainesville, Florida, United States.
  13. Lunau, M., Sommer, A., LemKe, A., Grossart, H. P. and Simon, M. (2004). "A new sample device for microaggregates in turbid aquatic systems." Limnology and Oceanography: Methods, Vol. 2, pp. 387-389. https://doi.org/10.4319/lom.2004.2.387
  14. Maggi, F., Mietta, F., and Winterwerp, J. C. (2007). "Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment." Journal of Hydrology, Vol. 343, No. 1-2, pp. 43-55. https://doi.org/10.1016/j.jhydrol.2007.05.035
  15. Manning, A. J., Friend, P. L., Prowse, N., and Amos, C. L. (2007). "Estuarine mud flocculation properties determined using an annular mini-flume and the LabSFLOC system." Journal of Continental Shelf Research, Vol. 27, No. 8, pp. 1080-1095. https://doi.org/10.1016/j.csr.2006.04.011
  16. Mikkelsen, O. A., Hill, P. S., and Milligan, T. G. (2006). "Singlegrain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera." Journal of Sea Research, Vol. 55, No. 2, pp. 87-102. https://doi.org/10.1016/j.seares.2005.09.003
  17. Owen, M. W. (1976). "Determination of the settling velocities of cohesive muds." Hydarulinc Research Station, Wallingfords, Report, IT, Vol. 161, pp. 1-8.
  18. Park, J. W. (2006). A study on depositional properties of muddy cohesive sediments from Kwangyang bay. M.S. dissertation, Chonbuk National University, Jeonju, R. of Korea.
  19. Shin, H. J., Smith, S., and Lee, G. H. (2013). "Floc property of Yeongsan cohesive bed sediment with respect to salinity and sediment concentration." Journal of the Korean Society of Oceanography, Vol. 18, No. 3, pp. 122-130.
  20. Son, M. (2009). Flocculation and transport of cohesive sediment. Ph.D. dissertation, University of Florida, Gainesville, Florida, United States.
  21. Son, M. (2011). "Measurement of settling velocity, size and density and analysis of fractal dimension of cohesive sediment." Korean Journal of Limnology, Vol. 44, No. 1, pp. 58-65.
  22. Son, M., and Hsu, T.-J. (2008). "Flocculation model of cohesive sediment using variable fractal dimension." Environmental Fluid Mechanics, Vol. 8, No. 1, pp. 55-71. https://doi.org/10.1007/s10652-007-9050-7
  23. Son, M., and Hsu, T.-J. (2009). "The effect of variable yield strength and variable fractal dimension on flocculation of cohesive sediment." Water Research, Vol. 43, No. 14, pp. 3582-3592. https://doi.org/10.1016/j.watres.2009.05.016
  24. Son, M., and Hsu, T.-J. (2011). "The effects of flocculation and bed erodibility on modeling cohesive sediment resuspension." Journal of Geophysical Research, Vol. 116, No. C3, DOI: 10.1029/2010JC006352
  25. Van Leussen, W. (1994). Estuarine macroflocs and their role in fine-grained sediment transport. Ph.D. Dissertation, University of Utrecht, Utrecht, Netherlands.
  26. Van Leussen, W., and Cornelisse, J. M. (1993). "The determination of the size sand settling velocities of estuarine flocs by an underwater video system." Netherlands Journal of Sea Research, Vol. 31, No. 3, pp. 231-241. https://doi.org/10.1016/0077-7579(93)90024-M
  27. Winterwerp, J. C. (1998). "A simple model for turbulence induced flocculation of cohesive sediment." Journal of Hydraulic Research, Vol. 36, No. 3, pp. 309-326. https://doi.org/10.1080/00221689809498621
  28. Winterwerp, J. C., and van Kesternen, W. G. M. (2004). Introduction to the physics of cohesive sediment in the marine environment. Elsevier.
  29. Yim, S. H. (2005). A laboratory study on local-seasonal variations of erosional properties of cohesive sediments from Keum estuary. M.S. dissertation, Chonbuk National University, Jeonju, R. of Korea.