DOI QR코드

DOI QR Code

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions

400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정

  • Received : 2016.03.02
  • Accepted : 2016.03.10
  • Published : 2016.03.31

Abstract

In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.

본 연구에서는 탄소이온을 이용한 고LET 방사선 치료시 CR-39 고체비적검출기(SSNTD)를 선량계로 사용하기 위하여 일본 중입자가속기연구소(HIMAC)의 400 MeV/u 탄소 이온을 이용한 교정실험을 수행하였다. 탄소 이온을 조사한 CR-39 검출기는 일본 우주항공연구개발기구(JAXA)의 고체비적검출기 전처리 프로토콜에 따라 화학적 에칭을 하였고, 에칭된 CR-39 검출기의 표면에 형성된 트랙은 디지털 카메라로 촬영한 후 Image J를 이용하여 분석하였다. 분석결과 400 MeV/u 탄소 이온의 ${\bar{y_F}}$${\bar{y_D}}$는 각각 $8.5keV/{\mu}m$$10.1keV/{\mu}m$이었으며, 이 결과는 한국천문연구원의 조직등가비례계수기(TEPC)로 측정한 값 및 GEANT4 몬테칼로 시뮬레이션으로 계산한 값과 잘 일치하였다. 본 연구를 통하여 CR-39의 선량 및 LET 교정인자를 결정할 수 있었으며, 고LET 방사선 치료시 CR-39를 이용한 선량평가의 가능성을 확인하였다.

Keywords

References

  1. C. Maschi, J. Thariat, J. Herault et al.: Tumour Response in Uveal Melanomas Treated with Proton Beam Therapy, Clinical Oncology, 28(3), 198-203, 2016 https://doi.org/10.1016/j.clon.2015.08.007
  2. Eiichi Takada, HIMAC group: Carbon Ion Radiotherapy at NIRS-HIMAC, Nuclear Physics A, 834(1-2), 730-735, 2010 https://doi.org/10.1016/j.nuclphysa.2010.01.132
  3. Niemantsverdriet M., van Goethem M.J., Bron R. et al.: High and Low LET Radiation Differentially Induce Normal Tissue Damage Signals, International Journal of Radiation Oncology, 83(4), 1291-1297, 2012 https://doi.org/10.1016/j.ijrobp.2011.09.057
  4. Lanh, Ngoc-Tu, Se-Young An, Sang-Hee Suh, Jin-Sang Kim; High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS, Journal of Sensor Science and Technology, 13(2), 128-132, 2004 https://doi.org/10.5369/JSST.2004.13.2.128
  5. J. A. Caffrey, D. M. Hamby: A review of instruments and methods for dosimetry in space, Advance in Space Research, 47, 563-574, 2011 https://doi.org/10.1016/j.asr.2010.10.005
  6. D. Zhoua, E. Semonesa, Weyland M., Benton E.R.: LET calibration for CR-39 detectors in different oxygen environments, Radiation Measurement, 42, 1499-1506, 2007 https://doi.org/10.1016/j.radmeas.2007.08.001
  7. J.L. Kim, J.W. Ha, Y.C. Yoon: Energy and Angular Response of CR-39 Neutron Track Detector, Journal of Korean Nuclear Society, 20(2), 71-79, 1988
  8. V. Kumar, R. G. Sonkawade, A. S. Dhaliwal: Optimization of CR-39 as a Neutron Detector, Indian Journal of Pure and Applied Physics, 48, 466-469, 2010
  9. J.M.C. Brown, S. Solomon, R.A. Tinker: Development of an energy discriminate CR-39 nuclear track etch dosimeter for Radon-220 gas measurements, Journal of Environmental Radiation, 102(10), 901-905, 2011 https://doi.org/10.1016/j.jenvrad.2010.09.008
  10. N.F. Santos, P.J. Iunes, S.R. Paulo, S. Guedes, J.C. Hadler: CR-39 alpha particle spectrometry for the separation of the radon decay product 214Po from the thoron decay product 212Po, Radiation Measurement, 45(7), 823-826, 2010 https://doi.org/10.1016/j.radmeas.2010.03.001
  11. A. Nagamatsu, K. Murakami, K. Kitajo, K Shimada, H. Kumagai, H. Tawara: Area radiation monitoring on ISS Increments 17 to 22 using PADLES in the Japanese Experiment Module Kibo, Radiation Measurement, 59, 84-93, 2013 https://doi.org/10.1016/j.radmeas.2013.05.008
  12. http://imagej.nih.gov/ij/ (retrieved on Oct. 2, 2012).
  13. D. Zhou, E. Semones, S. Guetersloh, N. Zapp, M. Weyland, E.R. Benton: The experimental and simulated LET spectrum and charge spectrum from CR-39 detectors exposed to irons near CRaTER at BNL, Radiation Measurement, 45, 916-922, 2010 https://doi.org/10.1016/j.radmeas.2010.02.014
  14. https://geant4.web.cern.ch/geant4/ (retrieved on Dec. 4, 2015).
  15. U.W. Nam, W.K. Park, J.J. Lee et. al.: Development and Characterization of Multi-Segmented Tissue Equivalent Proportional Counter for Microdosimetry, Journal of Sensor Science Technology, 24(2) 101-106, 2015 https://doi.org/10.5369/JSST.2015.24.2.101
  16. Majid Farahmand, A novel Tissue-Equivalent Proportional Counter Based on a Gas Electron Multiplier, Delft University Press, 17-19, 2004
  17. ICRP Report 103: 2007 Recommendations of the International Commission on Radiological Protection, International Commission on Radiological Protection, Elsevier, 2007.