DOI QR코드

DOI QR Code

중심축 하중을 받는 고온상태 강재기둥의 압축강도에 관한 연구

A Study on Compressive Strength of Centrally-Loaded Steel Columns at Elevated Temperatures

  • 윤종휘 (부산대학교, 건축공학과) ;
  • 이치형 (부산대학교, 생산기술연구소) ;
  • 윤성기 (부산대학교, 건축공학과)
  • Yoon, Jong Hwi (Dept. of Architectural Engineering, Pusan National University) ;
  • Lee, Chy Hyoung (Research Institute of Industrial Technology, Pusan National University) ;
  • Yoon, Sung Kee (Dept. of Architectural Engineering, Pusan National University)
  • 투고 : 2016.03.22
  • 심사 : 2016.05.09
  • 발행 : 2016.08.27

초록

중심축 하중을 받는 고온상태 강재기둥의 압축강도를 해석하기 위하여 새로운 유한요소 해석모델을 제시하였으며, 기존 연구를 대상으로 해석가정 및 유한요소해석 기법을 비교 분석하였다. 또한 유한요소 해석결과를 바탕으로 새로운 고온상태 강재 기둥의 설계식을 제안하였으며, 해석결과 및 실험연구 결과와 비교하였을 때 AISC와 EC3 설계식보다 본 연구의 제안식이 고온상태 강재기둥의 압축강도를 정확하게 표현하는 것을 확인하였다.

In order to evaluate compressive strength of centrally-loaded steel column at elevated temperature, new FE analysis techniques and assumptions of model were applied in this study. It also includes comparison with the existing studies, and a new design equation for centrally-loaded steel column at elevated temperature was proposed. The proposed equation was the most accurate of the three design equations(EC3, AISC, proposed equation) when comparing with the coefficient of determination on the simulated results and test results.

키워드

참고문헌

  1. 최승관 등 (2007) 구조물 성능기반 화재거동 해석 및 설계 기술 연구(I), 연구보고서, 한국건설기술연구원. Choi, S.K., et al. (2007) An Advanced Study on Performance- Based Fire Safety of Structures in Fire(I), Report No. KICT 2007-067, KICT, Korea (in Korean).
  2. 국가기술표준원 (2014) 건축 부재의 내화 시험방법- 기둥의 성능 조건(KS F 2257-7). Korean Agency for Technology and Standards (2014) Methods of Fire Resistance of Test for Elements of Building Construction-Specific Requirements for Columns (KS F 2257-7) (in Korean).
  3. European Committee for Standardization(CEN) (2005) Eurocode 3: Design of Steel Structures - Part 1-2: General Rules - Structural Fire Design, Brussels.
  4. American Institute of Steel Construction(AISC) (2010) Specification for Structural Steel Buildings(ANSI/AISC 360-10), Chicago.
  5. Franssen, J.M., Schleich, J.B., and Cajot, L.G. (1995) A Simple Model for the Fire Resistance of Axially-Loaded Members According to Eurocode 3, Journal of Constructional Steel Research, Vol.35, No.1, pp.49-69. https://doi.org/10.1016/0143-974X(94)00042-D
  6. Takagi, J. and Deierlein, G.G. (2007) Strength Design Criteria for Steel Members at Elevated Temperatures, Journal of Constructional Steel Research, Vol.63, No.8, pp.1036-1050. https://doi.org/10.1016/j.jcsr.2006.10.005
  7. Franssen, J.M., Schleich, J.B., Cajot, L.G., and Azpiazu, W. (1996) A simple Model for the Fire Resistance of Axially Loaded Members - Comparison with Experimental Results, Journal of Constructional Steel Research, Vol.37, No.3, pp.175-204. https://doi.org/10.1016/0143-974X(96)00008-9
  8. European Convention for Constructional Steelwork (ECCS) Technical Committee 8 - Structural Stability (1984) Ultimate Limit State Calculation of Sway Frames with Rigid Joints, ECCS, Brussels.
  9. 국가기술표준원 (2013) 열간 압연 형강의 모양, 치수, 무게 및 그 허용차(KS D 3502). Korean Agency for Technology and Standards (2013) Dimention, mass and permissible variations of hot rolled steel sections(KS D 3502) (in Korean).
  10. European Committee for Standardization(CEN) (2005) Eurocode 3: Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings, Brussels.
  11. Dassault Systemes (2012) Abaqus Analysis User's Manual - Volume IV: Elements, France.
  12. Azpiazu, W. and Unanue, J.A. (1993) Buckling Curves of Hot Rolled H Steel Sections Submitted to Fire, Report No. 97. 798-2-ME/V, LABEIN, Spain.

피인용 문헌

  1. 잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가 vol.29, pp.1, 2016, https://doi.org/10.7781/kjoss.2017.29.1.081