DOI QR코드

DOI QR Code

Effects on the Proton Conduction Limiting Barriers and Trajectories in BaZr0.875Y0.125O3 Due to the Presence of Other Protons

  • Gomez, Maria A. (Department of Chemistry, Mount Holyoke College) ;
  • Fry, Dana L. (Department of Chemistry, Mount Holyoke College) ;
  • Sweet, Marie E. (Department of Chemistry, Mount Holyoke College)
  • Received : 2016.04.18
  • Accepted : 2016.07.26
  • Published : 2016.09.30

Abstract

Kinetic Monte Carlo (KMC) and graph searches show that proton conduction limiting barriers and trajectories in $BaZr_{0.875}Y_{0.125}O_3$ are affected by the presence of other protons. At 1000 K, KMC limiting conduction barriers increase from 0.39 eV to 0.45 eV as the proton number is increased. The proton-proton radial distribution begins to rise at $2{\AA}$ and peaks at $4{\AA}$, which is half the distance expected, based on the proton concentration. Density functional theory (DFT) calculations find proton/proton distances of 2.60 and $2.16{\AA}$ in the lowest energy two-proton configurations. A simple average of the limiting barriers for 7-10 step periodic long range paths found via graph theory at 1100 K shows an increase in activation barrier from 0.32 eV to 0.37 eV when a proton is added. Both KMC and graph theory show that protons can affect each other's pathways and raise the overall conduction barriers.

Keywords

References

  1. K. Kreuer, "On the Development of Proton Conducting Materials for Technological Applications," Solid State Ionics, 97 [1] 1-15 (1997). https://doi.org/10.1016/S0167-2738(97)00082-9
  2. K. Kreuer, "On the Complexity of Proton Conduction Phenomena," Solid State Ionics, 136 149-60 (2000).
  3. K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 [1] 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  4. M. E. Bjorketun, P. G. Sundell, G. Wahnstrom, and D. Engberg, "A Kinetic Monte Carlo Study of Proton Diffusion in Disordered Perovskite Structured Lattices Based on First-Principles Calculations," Solid State Ionics, 176 [39] 3035-40 (2005). https://doi.org/10.1016/j.ssi.2005.09.044
  5. M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, "Effect of Acceptor Dopants on the Proton Mobility in $BaZrO_3$: A Density Functional Investigation," Phys. Rev. B, 76 [5] 054307 (2007).
  6. B. Merinov and W. Goddard III, "Proton Diffusion Pathways and Rates in Y-doped BaZrO3 Solid Oxide Electrolyte from Quantum Mechanics," J. Chem. Phys., 130 [19] 194707 (2009). https://doi.org/10.1063/1.3122984
  7. A. Bilic and J. D. Gale, "Ground State Structure of $BaZrO_3$: A Comparative First-Principles Study," Phys. Rev. B, 79 [17] 174107 (2009). https://doi.org/10.1103/PhysRevB.79.174107
  8. A. Bilic and J. D. Gale, "Proton Mobility in the In-doped $CaZrO_3$ Perovskite Oxide," Chem. Mater., 19 [11] 2842-51 (2007). https://doi.org/10.1021/cm070291b
  9. A. Bilic and J. D. Gale, "Simulation of Proton Diffusion in In-doped $CaZrO_3$," Solid State Ionics, 179 [21] 871-74 (2008). https://doi.org/10.1016/j.ssi.2008.01.034
  10. M. S. Islam, R. A. Davies, and J. D. Gale, "Proton Migration and Defect Interactions in the $CaZrO_3$ Orthorhombic Perovskite: A Quantum Mechanical Study," Chem. Mater., 13 [16] 2049-55 (2001). https://doi.org/10.1021/cm010005a
  11. Y. Liu, M. Yoshino, K. Tatsumi, I. Tanaka, M. Morinaga, and H. Adachi, "Local Geometry and Energetics of Hydrogen in Orthorhombic $SrZrO_3$," Mater. Trans., 46 [6] 1106-11 (2005). https://doi.org/10.2320/matertrans.46.1106
  12. C. Shi, M. Yoshino, and M. Morinaga, "First-Principles Study of Protonic Conduction in In-doped $AZrO_3$ (A=Ca, Sr, Ba)," Solid State Ionics, 176 [11] 1091-96 (2005). https://doi.org/10.1016/j.ssi.2004.12.011
  13. C. S. Shi and M. Morinaga, "Doping Effects on Proton Incorporation and Conduction in $SrZrO_3$," J. Comput. Chem., 27 [6] 711-18 (2006). https://doi.org/10.1002/jcc.20381
  14. K. D. Kreuer, T. Dipper, Y. Baikov, and J. Maier, "Water Solubility, Proton and Oxygen Diffusion in Acceptor Doped $BaCeO_3$: A Single Crystal Analysis," Solid State Ionics, 86-88 613 (1996). https://doi.org/10.1016/0167-2738(96)00221-4
  15. K. D. Kreuer, W. Munch, M. Ise, T. He, A. Fuchs, U. Traub, and J. Maier, "Defect Inter- Actions in Proton Conducting Perovskite-type Oxides," Ber. Bunsen-Ges., 101 [9] 1344-50 (1997).
  16. K. D. Kreuer, W. Munch, U. Traub, and J. Maier, "On Proton Transport in Perovskite-type Oxides and Plastic Hydroxides," Ber. Bunsen-Ges., 102 [3] 552-59 (1998). https://doi.org/10.1002/bbpc.19981020339
  17. K. D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, "Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications," Solid Sate Ionics, 145 [1] 295-306 (2001). https://doi.org/10.1016/S0167-2738(01)00953-5
  18. W. Munch, G. Seifert, K. D. Kreuer, and J. Maier, "A Quantum Molecular Dynamics Study of Proton Conduction Phenomena in $BaCeO_3$," Solid State Ionics, 86-87 647 (1996).
  19. W. Munch, G. Seifert, K. D. Kreuer, and J. Maier, "A Quantum Molecular Dynamics Study of Cubic Phase of $BaTiO_3$ and $BaZrO_3$," Solid State Ionics, 97 [1] 39-44 (1997). https://doi.org/10.1016/S0167-2738(97)00085-4
  20. W. Munch, K. D. Kreuer, G. Seifert, and J. Maier, "A Quantum Molecular Dynamics Study of Proton Diffusion in $SrTiO_3$ and $CaTiO_3$," Solid State Ionics, 125 [1] 39-45 (1999). https://doi.org/10.1016/S0167-2738(99)00156-3
  21. W. Munch, K. D. Kreuer, S. T. Adams, G. Seifert, and J. Maier, "The Relation between Crystal Structure and the Formation and Mobility of Protonic Charge Carriers in Perovskite-type Oxides: A Case Study of Y-doped $BaCeO_3$ and $SrCeO_3$," Phase Transitions, 68 [3] 567-86 (1999). https://doi.org/10.1080/01411599908224535
  22. W. Munch, K. D. Kreuer, G. Seifert, and J. Maier, "Proton Diffusion in Perovskites: Comparison between $BaCeO_3$, $BaZrO_3$, $SrTiO_3$, and $CaTiO_3$ Using Quantum Molecular Dynamics," Solid State Ionics, 136 183-89 (2000).
  23. M. A. Gomez, M. A. Griffin, S. Jindal, K. D. Rule, and V. R. Cooper, "The Effect of Octahedral Tilting on Proton Binding Sites and in Pseudo-Cubic Perovskite Oxides," J. Chem. Phys., 123 [9] 094703 (2005). https://doi.org/10.1063/1.2035099
  24. M. A. Gomez, S. Jindal, K. M. Fletcher, L. Foster, A. D. A. Addo, D. Valentin, C. Ghenoiu, and A. Hamilton, "Comparison of Proton Conduction in $KTaO_3$ and $SrZrO_3$," J. Chem. Phys., 126 [19] 194701 (2007). https://doi.org/10.1063/1.2735592
  25. M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher, and L. E. Fernandez, "The Effect of Yttrium Dopant on the Proton Conduction Pathways of $BaZrO_3$, a Cubic Perovskite," J. Chem. Phys., 132 [21] 214709 (2010). https://doi.org/10.1063/1.3447377
  26. M. A. Gomez, M. Chunduru, L. Chigweshe, and K. M. Fletcher, "The Effect of Dopant at the Zr Site on the Proton Conduction Pathways of $SrZrO_3$: An Orthorhombic Perovskite," J. Chem. Phys., 133 [6] 064701 (2010). https://doi.org/10.1063/1.3471798
  27. C. Y. Jones, J. Wu, L. LiPing, and S. M. Haile, "Hydrogen Content in Doped and Undoped $BaPrO_3$ and $BaCeO_3$ by Cold Neutron Prompt-Gamma Activation Analysis," J. Appl. Phys., 97 [11] 114908 (2005). https://doi.org/10.1063/1.1922590
  28. N. Bork, N. Bonanos, J. Rossmeist, and T. Vegge, "Thermodynamic and Kinetic Properties of Hydrogen Defect Pairs in $SrTiO_3$ from Density Functional Theory," Phys. Chem. Chem. Phys., 13 [33] 15256-63 (2011). https://doi.org/10.1039/c1cp20406h
  29. A. F. Voter, "Introduction to the Kinetic Monte Carlo Method," pp. 1-23 in Radiation Effects in Solids, Ed. by K. E. Sickafus and E. A. Kotomin, Springer, Netherlands, 2007.
  30. R. Pornprasertsuk, J. Cheng, H. Huang, and F. Prinz, "Electrochemical Impedance Analysis of Solid Oxide Fuel Cell Electrolyte Using Kinetic Monte Carlo Technique," Solid State Ionics, 178 [3] 195-205 (2007). https://doi.org/10.1016/j.ssi.2006.12.016
  31. G. Kresse, Ab Initio Molekular Dynamik Fur Flussige Metalle, in Ph.D. thesis, Technische Universittat, Wien, 1993.
  32. G. Kresse and J. Hafner, "Ab Initio Molecular-Dynamics for Liquid-Metals," Phys. Rev. B, 47 [1] 558-561 (1993). https://doi.org/10.1103/PhysRevB.47.558
  33. G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudge Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000). https://doi.org/10.1063/1.1329672
  34. http://theory.cm.utexas.edu/vtsttools/dymmat.html#dymmat. Accessed on 26/05/2015.
  35. A.-M. Azad and S. Subramaniam, "Temperature Dependence of the Dielectric Response of $BaZrO_3$ by Immittance Spectroscopy," Mater. Res. Bull., 37 [1] 11-21 (2002). https://doi.org/10.1016/S0025-5408(01)00791-7
  36. F. Iguchi, T. Tsurui, N. Sata, Y. Nago, and H. Yugami, "The Relationship between Chemical Composition Distributions and Specific Grain Boundary Conductivity in Ydoped $BaZrO_3$ Proton Conductors," Solid State Ionics, 180 [6] 563-68 (2009). https://doi.org/10.1016/j.ssi.2008.12.006
  37. Y. Yamazaki, R. Hernandez-Sanches, and S. M. Haile, "High Total Proton Conductivity in Large-Grained Yttrium-doped Barium Zirconate," Chem. Mater., 21 [13] 2755-62 (2009). https://doi.org/10.1021/cm900208w
  38. P. Babilo, T. Uda, and S. Haile, "Processing of Yttriumdoped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [05] 1322-30 (2007). https://doi.org/10.1557/jmr.2007.0163
  39. C. Kjolseth, H. Fjeld, O. Prytz, P. I. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space- Charge Theory Applied to Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5] 268-75 (2010). https://doi.org/10.1016/j.ssi.2010.01.014
  40. J. W. Bennett, I. Grinberg, and A. M. Rappe, "Effect of Symmetry Lowering on the Dielectric Response of $BaZrO_3$," Phys. Rev. B, 73 [18] 180102 (2006). https://doi.org/10.1103/PhysRevB.73.180102
  41. M. A. Gomez, D. Shepardson, L. T. Nguyen, and T. Kehinde, "Periodic Long Range Proton Conduction Pathways in Pseudo-Cubic and Orthorhombic Perovskites," Solid State Ionics, 213 8-13 (2011).
  42. J. Scott, T. Ideker, R. M. Karp, and R. Sharan, "Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks," pp. 1-13 in Research in Computational Molecular Biology, Vol. 3500, Springer Berlin Heidelberg, Heidelberg, 2005.
  43. H. G. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).
  44. M. A. Gomez and F.-J. Liu, "Protons in Al doped $BaZrO_3$ Escape Dopant Traps to Access Long Range Proton Conduction Highways," Solid State Ionics, 252 40-7 (2013). https://doi.org/10.1016/j.ssi.2013.05.014
  45. R. Krueger, F. Haibach, D. Fry, and M. Gomez, "Centrality Measures Highlight Proton Traps and Access Points to Proton Highways in Kinetic Monte Carlo Trajectories," J. Chem. Phys., 142 [15] 154110 (2015). https://doi.org/10.1063/1.4917469

Cited by

  1. vol.29, pp.4, 2017, https://doi.org/10.1021/acs.chemmater.6b03907
  2. Local structure and vibrational dynamics in indium-doped barium zirconate pp.2050-7496, 2018, https://doi.org/10.1039/C8TA06202A
  3. Atomistic Insight into the Correlation among Oxygen Vacancies, Protonic Defects, and the Acceptor Dopants in Sc-Doped BaZrO3 Using First-Principles Calculations vol.122, pp.12, 2016, https://doi.org/10.1021/acs.jpcc.7b11742
  4. Carrier-Carrier Interaction in Proton-Conducting Perovskites: Carrier Blocking vs Trap-Site Filling vol.123, pp.44, 2016, https://doi.org/10.1021/acs.jpcc.9b08199
  5. Twenty years of exceptional success: The molecular education and research consortium in undergraduate computational chemistry (MERCURY) vol.120, pp.20, 2020, https://doi.org/10.1002/qua.26274
  6. Cooperative origin of proton pair diffusivity in yttrium substituted barium zirconate vol.3, pp.1, 2016, https://doi.org/10.1038/s42005-020-00464-5
  7. Oxygen Vacancies Altering the Trapping in the Proton Conduction Landscape of Doped Barium Zirconate vol.124, pp.51, 2016, https://doi.org/10.1021/acs.jpcc.0c09461
  8. Graph analysis of proton conduction pathways in scandium-doped barium zirconate vol.154, pp.7, 2016, https://doi.org/10.1063/5.0039103