• Title/Summary/Keyword: Proton trajectories

Search Result 1, Processing Time 0.015 seconds

Effects on the Proton Conduction Limiting Barriers and Trajectories in BaZr0.875Y0.125O3 Due to the Presence of Other Protons

  • Gomez, Maria A.;Fry, Dana L.;Sweet, Marie E.
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.521-528
    • /
    • 2016
  • Kinetic Monte Carlo (KMC) and graph searches show that proton conduction limiting barriers and trajectories in $BaZr_{0.875}Y_{0.125}O_3$ are affected by the presence of other protons. At 1000 K, KMC limiting conduction barriers increase from 0.39 eV to 0.45 eV as the proton number is increased. The proton-proton radial distribution begins to rise at $2{\AA}$ and peaks at $4{\AA}$, which is half the distance expected, based on the proton concentration. Density functional theory (DFT) calculations find proton/proton distances of 2.60 and $2.16{\AA}$ in the lowest energy two-proton configurations. A simple average of the limiting barriers for 7-10 step periodic long range paths found via graph theory at 1100 K shows an increase in activation barrier from 0.32 eV to 0.37 eV when a proton is added. Both KMC and graph theory show that protons can affect each other's pathways and raise the overall conduction barriers.