References
- M. Boileau, S, Maillot, Sylvain and J. Porti, Three-dimensional orbifolds and their geometric structures, Panoramas et Syntheses, 15, Societe Mathematique de France, Paris, 2003.
- M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Appendix A by Michael Heusener and Porti, Asterisque No. 272 (2001).
- C. Gordon, Problems, Workshop on Heegaard Splittings, 401-411, Geom. Topol. Monogr. 12, Geom. Topol. Publ., Coventry, 2007.
- E. Hecke, Uber die Bestimung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699. https://doi.org/10.1007/BF01565437
- D. Lee and M. Sakuma, Simple loops on 2-bridge spheres in 2-bridge link complements, Electron. Res. Announc. Math. Sci. 18 (2011), 97-111.
- D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres, Proc. London Math. Soc. 104 (2012), 359-386. https://doi.org/10.1112/plms/pdr036
- D. Lee and M. Sakuma, Simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links, Electron. Res. Announc. Math. Sci. 19 (2012), 97-111.
- D. Lee and M. Sakuma, Epimorphisms from 2-bridge link groups onto Heckoid groups (I), Hiroshima Math. J. 43 (2013), 239-264.
- D. Lee and M. Sakuma, Epimorphisms from 2-bridge link groups onto Heckoid groups (II), Hiroshima Math. J. 43 (2013), 265-284.
- D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links (I), arXiv:1402.6870.
- D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links (II), arXiv:1402.6873.
- R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
- B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568-571. https://doi.org/10.1090/S0002-9904-1968-12012-9
- R. Riley, Parabolic representations of knot groups, I, Proc. London Math. Soc. 24 (1972), 217-242.
- R. Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc. 334 (1992), 389-409. https://doi.org/10.1090/S0002-9947-1992-1107029-9