DOI QR코드

DOI QR Code

SIMPLE LOOPS ON 2-BRIDGE SPHERES IN HECKOID ORBIFOLDS FOR THE TRIVIAL KNOT

  • Lee, Donghi (Department of Mathematics, Pusan National University) ;
  • Sakuma, Makoto (Department of Mathematics, Graduate School of Science, Hiroshima University)
  • Received : 2016.02.23
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

In this paper, we give a necessary and sufficient condition for an essential simple loop on a 2-bridge sphere in an even Heckoid orbifold for the trivial knot to be null-homotopic, peripheral or torsion in the orbifold. We also give a necessary and sufficient condition for two essential simple loops on a 2-bridge sphere in an even Heckoid orbifold for the trivial knot to be homotopic in the orbifold.

Keywords

References

  1. M. Boileau, S, Maillot, Sylvain and J. Porti, Three-dimensional orbifolds and their geometric structures, Panoramas et Syntheses, 15, Societe Mathematique de France, Paris, 2003.
  2. M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Appendix A by Michael Heusener and Porti, Asterisque No. 272 (2001).
  3. C. Gordon, Problems, Workshop on Heegaard Splittings, 401-411, Geom. Topol. Monogr. 12, Geom. Topol. Publ., Coventry, 2007.
  4. E. Hecke, Uber die Bestimung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699. https://doi.org/10.1007/BF01565437
  5. D. Lee and M. Sakuma, Simple loops on 2-bridge spheres in 2-bridge link complements, Electron. Res. Announc. Math. Sci. 18 (2011), 97-111.
  6. D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres, Proc. London Math. Soc. 104 (2012), 359-386. https://doi.org/10.1112/plms/pdr036
  7. D. Lee and M. Sakuma, Simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links, Electron. Res. Announc. Math. Sci. 19 (2012), 97-111.
  8. D. Lee and M. Sakuma, Epimorphisms from 2-bridge link groups onto Heckoid groups (I), Hiroshima Math. J. 43 (2013), 239-264.
  9. D. Lee and M. Sakuma, Epimorphisms from 2-bridge link groups onto Heckoid groups (II), Hiroshima Math. J. 43 (2013), 265-284.
  10. D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links (I), arXiv:1402.6870.
  11. D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in Heckoid orbifolds for 2-bridge links (II), arXiv:1402.6873.
  12. R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
  13. B. B. Newman, Some results on one-relator groups, Bull. Amer. Math. Soc. 74 (1968), 568-571. https://doi.org/10.1090/S0002-9904-1968-12012-9
  14. R. Riley, Parabolic representations of knot groups, I, Proc. London Math. Soc. 24 (1972), 217-242.
  15. R. Riley, Algebra for Heckoid groups, Trans. Amer. Math. Soc. 334 (1992), 389-409. https://doi.org/10.1090/S0002-9947-1992-1107029-9