DOI QR코드

DOI QR Code

EXPONENTIAL STABILITY FOR THE GENERALIZED KIRCHHOFF TYPE EQUATION IN THE PRESENCE OF PAST AND FINITE HISTORY

  • Kim, Daewook (Department of Mathematics and Education, Seowon University)
  • 투고 : 2016.08.22
  • 심사 : 2016.08.29
  • 발행 : 2016.09.30

초록

In this paper, we study the generalized Kirchhoff type equation in the presence of past and finite history $$\large u_{tt}-M(x,t,{\tau},\;{\parallel}{\nabla}u(t){\parallel}^2){\Delta}u+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^t}\;h(t-{\tau})div[a(x){\nabla}u({\tau})]d{\tau}\\\hspace{25}-{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{-{\infty}}}^t}\;k(t-{\tau}){\Delta}u(x,t)d{\tau}+{\mid}u{\mid}^{\gamma}u+{\mu}_1u_t(x,t)+{\mu}_2u_t(x,t-s(t))=0.$$ Under the smallness condition with respect to Kirchhoff coefficient and the relaxation function and other assumptions, we prove the expoential decay rate of the Kirchhoff type energy.

키워드

참고문헌

  1. , Asymptotic behavior for the viscoelastic Kirchhoff type equation with an internal time-varying delay term, East Asian Math. J. 32 (2016), 399-412. https://doi.org/10.7858/eamj.2016.030
  2. S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differential Equations 41 (2011), 1-20.
  3. W. Liu, General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term, Taiwanese journal of mathematics 17 (2013), 2101-2115. https://doi.org/10.11650/tjm.17.2013.2968
  4. W. Liu, Stabilization for the viscoelastic Kirchhoff type equation with nonlinear source, East Asian Math. J. 32 (2016), 117-128. https://doi.org/10.7858/eamj.2016.012
  5. F. Li, Z. Zhao and Y. Chen, Global existence and uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, J Nonlinear Analysis: Real World Applications, 12 (2011), 1759-1773. https://doi.org/10.1016/j.nonrwa.2010.11.009
  6. F. Li and Z. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Real World Applications, 74 (2011), 3468-3477.
  7. C. F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151-165.
  8. R. W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh Vol. 82 (1978), 19-26. https://doi.org/10.1017/S0308210500011008
  9. S. Y. Lee and C. D. Mote, Vibration control of an axially moving string by boundary control, ASME J. Dyna. Syst., Meas., Control, 118 (1996), 66-74. https://doi.org/10.1115/1.2801153
  10. Y. Li, D. Aron and C. D. Rahn, Adaptive vibration isolation for axially moving strings: Theory and experiment, Automatica, 38 (1996), 379-390.
  11. J. L. Lions, On some question on boundary value problem of mathematical physics, 1, in: G.M. de La Penha, L. A. Medeiros (Eds.), Contemporary Developments of Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam, 1978.
  12. M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, Journal of Mathematical Analysis and Applications, 238 (1999), 418-428. https://doi.org/10.1006/jmaa.1999.6517
  13. F. Pellicano and F. Vestroni, Complex dynamics of high-speed axially moving systems, Journal of Sound and Vibration, 258 (2002), 31-44. https://doi.org/10.1006/jsvi.2002.5070
  14. G. Kirchhoff, Vorlesungen uber Mechanik, Teubner, Leipzig, 1983.
  15. G. Kirchhoff, Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014. https://doi.org/10.1016/j.camwa.2011.08.011
  16. G. Kirchhoff, Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617. https://doi.org/10.1016/j.na.2012.01.018
  17. J. Lꠕmaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with nonhomogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820. https://doi.org/10.1016/j.jmaa.2008.02.051
  18. C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal. 37 (1970), 297-308.