참고문헌
- Liu, C. and Czernuszka, J. T., 2007, "Design and Development of Three-dimensional Scaffolds for Tissue Engineering," Institution of Chemical Engineers, Vol. 85 (A7), pp. 1051-1064. https://doi.org/10.1205/cherd06196
- Dorozhkin, S. V., 2010, "Bioceramics of Calcium Orthophosphates," Biomaterials, Vol. 31, pp. 1465-1485. https://doi.org/10.1016/j.biomaterials.2009.11.050
- Gao, C., Yang, b., Hu, H., Liu, J., Shuai, C. and Peng, S., 2013, "Enhanced Sintering Ability of Biphasic Calcium Phosphate by Polymers used for Bone Scaffold Fabrication," Materials Science and Engineering C, Vol. 33, pp. 3802-3810. https://doi.org/10.1016/j.msec.2013.05.017
- Xu, J. L. and Khor, K. A., 2007, "Chemical Analysis of Silica Doped Hydroxyapatite Biomaterials Consolidated by a Spark Plasma Sintering Method," Journal of Inorganic Biochemistry, Vol. 101, pp. 187-195. https://doi.org/10.1016/j.jinorgbio.2006.09.030
- Feng, P., Wei, P., Li, P., Gao, C., Shuai, C. and Peng S., 2014, "Calcium Silicate Ceramic Scaffolds Toughened with Hydroxyapatite Whiskers for Bone Tissue Engineering," Materials Characterization, Vol. 97, pp. 47-56. https://doi.org/10.1016/j.matchar.2014.08.017
- Seol, Y. J., Kim, J. Y., Lee, S. J., Park, E. K., Kim, S. Y. and Cho, D. W., 2008 "Fabrication of Hydroxyapatite Scaffold using Micro-stereolithography and Mold Technology," Proc. of the KSME Spring Annual Meeting, KSME 08BE044, pp. 102-103.
- Sabree, I., Gough, J. E. and Derby, B., 2015 "Mechanical Properties of Porous Ceramic Scaffolds: Influence of Internal Dimensions," Ceramic International, Vol. 41, pp. 8425-8432. https://doi.org/10.1016/j.ceramint.2015.03.044
- Mohanty, S., Sanger, K., Heiskanen, A., Trifol, J., Szabo, P., Dufva, M., Emneus, J. and Wolff, A., 2016, "Fabrication of Scalable Tissue Engineering Scaffolds with Dual-pore Microarchitecture by Combining 3D Printing and Particle Leaching," Materials Science and Engineering C, Vol. 61, pp. 180-189. https://doi.org/10.1016/j.msec.2015.12.032
- Du, D., Asaoka, T., Shinohara, M., Kageyama, T., Ushida, T., and Furukawa, K. S., 2015, "Microstereolithography-Based Fabrication of Anatomically Shaped Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering," BioMed Research International, 859456(9pps).
- Cho, Y. S., Hong, M. W., Kim, S. Y., Lee, S. J., Lee, J. H., Kim, Y. Y. and Cho, Y. S., 2014, "Fabrication of Dual-pore Scaffolds using SLUP (Salt Leaching using Powder) and WNM (Wire-network Molding) Techniques," Materials Science and Engineering C, Vol. 45, pp. 546-555. https://doi.org/10.1016/j.msec.2014.10.009
- Sa, M. W. and Kim, J. Y., 2013 "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 4, pp. 649-655. https://doi.org/10.1007/s12541-013-0087-x
- An, J., Teoh, J. E. M., Suntornnond, R. and Chua, C. K., 2015, "Design and 3D Printing of Scaffolds and Tissues," Eng., Vol. 1, No. 2, pp. 261-268. https://doi.org/10.15302/J-ENG-2015061
- Doopedia, "Sodium Alginate," http://www.doopedia.co.kr/search/encyber/new_totalSearch.jsp (Accessed July 5, 2016)
- Sa, M. W. and Kim, J. Y. 2014, "Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling," Trans. Korean Soc. Mech. Eng. A., Vol. 38, No. 11, pp. 1273-1281. https://doi.org/10.3795/KSME-A.2014.38.11.1273