• Title/Summary/Keyword: Particle Leaching

Search Result 134, Processing Time 0.024 seconds

Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate (LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화)

  • 조현민;유명재;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF

A Study on Improvement of Valuable Metals Leaching and Distribution Characteristics on Waste PCBs(Printed Circuit Boards) by Using Pulverization Process (폐 PCBs의 미분쇄 공정 적용에 따른 유가금속 분포 특성 및 금속 침출 향상에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2015
  • The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.

Leaching Behavior of LD Slag

  • Kim, Hyung-Suek;Han, Ki-Hyun;M. S. Oh;Byeon, Tae-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.526-531
    • /
    • 2001
  • LD slag, that is, a by-product of steel making process, has been mainly used as land construction materials. Recently, the seashore application of LD slag was tried in Japan and Korea tut the reaction between LD slag and seawater was not studied yet. We tried to clarify the leaching reaction and/or mechanism of LD slag and the reaction between seawater and LD slag. We tried to apply these results to the decarbonization of seawater for seawater magnesia process. At first, LD slag was milled and classified into 5 grades, that is, (ⅰ)45${\mu}{\textrm}{m}$ under, (ⅱ)0.25~0.5mm (ⅲ)0.5~1mm(ⅳ)1~2mm, (ⅴ)2.36~3.35mm. These slags were leached in the distilled water. In case of 45${\mu}{\textrm}{m}$ under, the pH of the leached solution was over 12. The chemical analysis of leached solution showed that the $Ca^{+}$$^2$was main component and the S $i^{+}$$^4$was very low. On the other hand, the content of S $i^{+}$$^4$in leached solution was decreased with the increase of pH of this solution. The nearly pure calcium solution was made and the ultra high purity MgO could be made with this calcium solution. The leaching behavior of LD slag was different between the fine particle and coarse particle. The calcium was leached by bulk dissolution in the coarse particle and by surface controlled reaction in fine particle. The leaching rate was slow in coarse particle and fast in fine particle. Therefore, the high pH solution, that is, over 12, was obtained in fine particle.cle.e.

  • PDF

Preparation of High Purity Si Powder by SHS (자전 연소 합성법에 의한 고순도 실리콘 분말제조)

  • Shin, Chang-Yun;Min, Hyun-Hong;Yun, Ki-Seok;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.93-97
    • /
    • 2007
  • High purity Si powder was prepared in the system of $SiO_2-Mg$ combustion reaction. Various conditions of combustion reaction and leaching were investigated. As the particle size of Mg decreased and the compaction pressure increased the quantity of the unreacted power was decreased. In the acid leaching of MgO, increasing particle size, reaction temperature, rotating speed and reaction time made leaching effect low. Final Si powder produced by combustion and leaching reaction, has a high purity of 99.9% with irregular shape.

Sulfuric Acid Leaching of Manganese from Ferromanganese Dust (황산에 의한 페로망간 집진분 중의 망간 침출)

  • Park, Suji;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.24-30
    • /
    • 2015
  • The sulfuric acid leaching of ferromanganese dust was studied. The effect of acid concentration, reaction temperature, stirring rate, particle size and solid to liquid ratio on Mn and Fe extraction in the solution were investigated. It was found that the leaching rate of Mn and Fe increased with increasing reaction temperature and sulfuric acid concentration. Examination of data by shrinking core model suggested that the leaching rate is controlled by chemical reaction at the surface of particle. The activation energy for the leaching reaction of Mn and Fe were calculated to be 79.55 kJ/mol and 77.48 kJ/mol, respectively.

Comparison of Bioleaching Kinetics of Spent Catalyst by Adapted and Unadapted Iron & Sulfur Oxidizing Bacteria - Effect of Pulp Density; Particle Size; Temperature

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Gahan, Chandra Sekhar;Chung, Hun-Saeng;Lee, Seoung-Won
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.956-966
    • /
    • 2011
  • Bioleaching studies of metals from a spent catalyst were conducted using both adapted and unadapted bacterial cultures. The bacterium used in this experiment was Acidithiobacillus ferrooxidans. A comparison of the kinetics of leaching was made between the two cultures by varying the leaching parameters, including the pulp density, particle size and temperature. Both cultures showed similar effects with respect to the above parameters, but the leaching rates of all metals were higher with the adapted compared to the unadapted bacterial cultures. The leaching reactions were continued for 240 h in the case of the unadapted bacterial culture, but only for 40 h in the case of the adapted bacterial culture. The leaching reactions followed first order kinetics. In addition, the kinetics of leaching was concluded to be a diffusion control model; therefore, the product layers were impervious.

Toward high recovery and selective leaching of zinc from electric arc furnace dust with different physicochemical properties

  • Lee, Han Saem;Park, Da So Mi;Hwang, Yuhoon;Ha, Jong Gil;Shin, Hyung Sang
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.335-344
    • /
    • 2020
  • This work describes highly efficient recovery and selective leaching of Zn from electric arc furnace dust (EAFD) with different physicochemical properties, induced by acid leaching at ambient conditions. The chemical compositions, mineralogical phases, and particle sizes of the EAFDs were analyzed and compared. The effects of leaching time, liquid/solid ratio, acid type, and acid concentration on the selective leaching of Zn were also studied. The EAFD with high Fe/Zn ratio (> 1, EAFD3) was richer in ZnFe2O4 and exhibited larger particle size than samples with low Fe/Zn ratio (< 1, EAFD1,2). ANOVA analysis revealed that the Fe/Zn ratios of the EAFDs also have a significant effect on Zn extraction (p < 0.005). Selective leaching of Zn with minimum Fe dissolution was obtained at pH > 4.5, regardless of other parameters or sample properties. The maximum Zn extraction rate obtained by the pH control was over 97% for EAFD1 and EAFD2, 76% for EAFD3, and 80% for EAFD4. The present results confirm that the Fe/Zn ratio can be used to identify EAFDs that permits facile and high-yield Zn recovery, and pH can be used as a process control factor for selective leaching of Zn regardless of any differences in the properties of the EAFD sample.

Sorption and Leaching Studies of Fenitrothion and Tebuconazole in Granular Activated Carbon and Charcoal (Fenitrothion과 Tebuconazole의 입상 활성탄 및 차콜에 의한 흡착과 용탈에 관한 연구)

  • Lee, Dong-Ik;Chun, So-Ul;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.47-55
    • /
    • 2006
  • Golf course community has always been concerned about water quality regarding to pesticide and fertilizer managements. This study conducted to investigate sorption and leaching behavior of common pesticides used for golf course in granular activated carbon I (GAC 1), granular activated carbon II(GAC II), and charcoal. We used batch study to investigate the influence of concentrations of Smithion and Folicur and particle sizes of GAC I, GAC II, and charcoal on sorption. Also, column study was used to investigate the leaching effect of Smithion in GAC I and charcoal. We found that sorption of Smithion and Folicur were higher in less $45{\mu}m$ of particle size for GAC I, GAC II, and charcoal compared to $1.7{\sim}2.0mm$ size, and the sorption of Smithion and Folicur in less $45{\mu}m$ of particle size ranged from 90 to 99%. In the column study, there was no difference in leaching effect between GAC I and charcoal. Overall, we found that charcoal might offer a cost effective adsorbent as a pesticides in leachate.

Effect of Gelatin Particles on Cell Proliferation in Polymer Scaffolds Made Using Particulate Leaching Technique. (Particulate Leaching 기법을 사용한 Polymer Scaffold 상의 세포증식에 있어서 젤라틴 입자의 효과)

  • 서수원;신지연;김진훈;김진국;길광현
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • On the background of general idea and technique of bioscience, medicine and engineering, tissue engineering aim at maintenance, improvement and repair of human body function through manufacturing and transplantation of artificial tissue and organ exchangeable human body. Basic material used in the area is scaffold that aid tissue and organ formation. Making scaffold, solvent-casting and particulate leaching technique is widely used in manufacturing of porous polymer scaffold. There are many types of particle including salt and gelatin. Salt is a most commonly used particulate because it is easily available and very easy to handle and gelatin particle is another candidate for this method because it is known as a material, which enhances cell attachment and proliferation. But there is no comparative study of two kinds of materials. In this study we compared the biocompatibility of the two scaffolds made from salt(salt scaffold) and gelatin particle (gelatin scaffold). These results demonstrated that gelatin scaffold showed better attachment of cells at the initial stage and better proliferation of cells. The better performance of gelatin scaffold is contributed to the better connection of pores in the same porosity.

Preparation and Release Behavior of Albumin-Loaded PLGA Scaffold by Ice Particle Leaching Method (얼음입자추출법을 이용한 알부민 함유 PLGA 담체의 제조 및 방출 거동)

  • Hong Keum Duck;Seo Kwang Su;Kim Soon Hee;Kim Sun Kyung;Khang Gilson;Shin Hyung Sik;Kim Moon Suk;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.282-287
    • /
    • 2005
  • A novel ice particle leaching method for fabrication of porous and biodegradable PLGA scaffold has been proposed for the application to tissue engineering. After uniform mixing of poly(L-lactide-co-glycolide) (PLGA) and bovine serum albumin-fluorescein isothiocyanate (FITC-BSA), the FITC-BSA loaded scaffold was fabricated by adding various ratio of ice particle. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 28 days at $37^{circ}$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer and the morphological change of the scaffolds was observed by scanning electron microscope. The release initial burst of BSA containing scaffolds was lower than that of simple dipping scaffolds resulting in constant release aspect. Although the BSA concentration increased. the initial burst was not increased. As a result of this study, it can be suggested that ice particle leaching method for the tissue engineered scaffold miff be very useful and it is possible to impregnate with water soluble factors like cytokine. We suggest that ice particle leaching method may be useful to tissue engineered organ regeneration.