DOI QR코드

DOI QR Code

2차원 평면배열 수중 음향 트랜스듀서 내 상호간섭 저감 방안 연구

A study on the reduction of crosstalk in a two-dimensional planar array of underwater acoustic transducers

  • 투고 : 2016.08.12
  • 심사 : 2016.09.08
  • 발행 : 2016.09.30

초록

본 연구에서는 평면배열 수중 음향 트랜스듀서 내 소자들간의 상호간섭을 저감시키기 위한 다양한 구조적 방안을 제안하고, 각 방안의 효용성을 유한 요소해석을 통해 분석하였다. 그 결과, 소자들 사이의 커프의 깊이는 깊을수록, 커프의 너비는 넓을수록, 커프 충진재의 탄성계수는 낮을수록 상호간섭 저감 효과가 높게 나타났다. 본 연구의 결과는 평면배열형 수중 음향 트랜스듀서의 성능을 극대화시키기 위한 구조 설계에 유용하게 사용될 수 있을 것으로 기대된다.

In this work, we proposed various structural methods to reduce the crosstalk between elements in a planar array of underwater acoustic transducers and investigated the efficacy of each method through finite element analysis. It is shown that the effects of crosstalk reduction increase as the depth of the kerf among elements and the width of the kerf increase, and the elastic stiffness of the kerf filler decreases. Results of this study are expected to be useful in designing the structure of underwater acoustic planar array transducers to maximize their performance.

키워드

참고문헌

  1. Z. Y. He and Y. L. Ma, "Optimization of transmitting beam patterns of a conformal transducer array," J. Acoust. Soc. Am. 123, 2563-2569 (2008). https://doi.org/10.1121/1.2897046
  2. J. N. Decarpigny, B. Hamonic, and O. B Wilson "The design of low-frequency underwater acoustic projectors; Present status and future trends," IEEE J. Oceanic Eng. 16, 107-122 (1991). https://doi.org/10.1109/48.64890
  3. J. Larson, "Non-ideal radiators in phased array transducers," in Proc. IEEE Ultras. Sym. 673-684 (1981).
  4. J. F. Guess, C. G. Oakley, S. J. Douglas, and R. D. Morgan, "Cross-talk paths in array transducers," in Proc. IEEE Ultras. Sym. 1279-1282 (1995).
  5. D. Robertson, G. Hayward, A. Gachagan, J. Hyslop, and P. Reynolds, "Comparison of mechanical cross talk in single crystal and ceramic periodic piezoelectric composite arrays," in Proc. IEEE Ultras. Sym. 1668-1671 (2003).
  6. S. Lee, Y. Kim, and Y. Roh, "A study on the cross talk level in a piezoelectric ultrasonic array transducer" (in Korean), J. Acoust. Soc. Kr. 21, 56-61 (2002).
  7. Y. Kim and Y. Roh, "A study for reducing the acoustic cross talk level in an array type piezoelectric ultrasonic transducer using acoustic wall" (in Korean), J. Acoust. Soc. Kr. 22, 208-216 (2003).
  8. Y. Tang, H. Tian, Y. F. Wang, Y. Shu, C. J. Zhou, H. Sun, C. H. Zhang, H. Chen, and T. L. Ren, "An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging," Sensors 13, 9624-9634 (2013). https://doi.org/10.3390/s130809624
  9. A. Bybi, C. Granger, S. Grondel, A. C. Hladky-Hennion, and J. Assaad, "Electrical method for crosstalk cancellation in transducer arrays," NDT and E Int. 62, 115-121 (2014). https://doi.org/10.1016/j.ndteint.2013.12.003
  10. W. Lee and Y. Roh, "New design of the kerfs of an ultrasonic two-dimensional array transducer to minimize cross-talk," Jpn. J. Appl. Phys. 67, 07HD06-1-4 (2010).
  11. Y. Roh and T. Khuri-Yakub, "Finite element analysis of underwater capacitor micromachined ultrasonic transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 49, 293-298 (2002). https://doi.org/10.1109/58.990939
  12. W. Wang, S. W. Or, Q. Yue, Y. Zhang, J. Jiao, C. M. Leung, X. Zhao, and H. Luo, "Ternary piezoelectric single-crystal PIMNT based 2-2 composite for ultrasonic transducer applications," Sens. Actuators, A. Phys. 196, 70-77 (2013). https://doi.org/10.1016/j.sna.2013.03.014