DOI QR코드

DOI QR Code

옥수수 재배기간 동안 바이오차 시용 수준에 따른 탄소 격리량 산정 및 이익 분석

Estimation of Carbon Sequestration and Its Profit Analysis with Different Application Rates of Biochar during Corn Cultivation Periods

  • 신중두 (국립농업과학원 기후변화생태과) ;
  • 최용수 (국립농업과학원 기후변화생태과) ;
  • 이선일 (국립농업과학원 기후변화생태과)
  • Shin, JoungDu (Department of Climate Change & Agro-ecology, National Institute of Agricultural Sciences) ;
  • Choi, Yong-Su (Department of Climate Change & Agro-ecology, National Institute of Agricultural Sciences) ;
  • Lee, SunIl (Department of Climate Change & Agro-ecology, National Institute of Agricultural Sciences)
  • 투고 : 2016.08.30
  • 심사 : 2016.09.07
  • 발행 : 2016.09.30

초록

바이오차 시용이 토양비옥도나 온실가스 완화에 기여하는 것 외에, 경작지 시용에 따른 탄소격리 및 순익 분석이 평가된바 거의 없다. 본 연구는 옥수수 재배 기간 동안 온실가스 완화에 대한 이익을 평가하고, 탄소격리를 산정하기 위해 수행되었다. 본 실험의 처리구는 돈분처리구, 돈분을 퇴비로 시용하면서 바이오차 처리를 2,600(0.2%), 13,000(1%), 및 26,000(2%) kg/ha로 나누어 시용하였다. 바이오차 시용에 따른 탄소 격리량을 예측하기 위해 Y = 0.5523X - 742.57 ($r^2=0.939^{**}$) 일차 모형식을 유도하였으며, 본 수식을 바탕으로 바이오차 0.2, 1 및 2% 시용 시 탄소 격리량은 각각 1,235, 3,978, 및 14,794 kg/ha로 산정되었고, 온실가스 완화는 각각 4.5, 14.6, 및 54.2 ton/ha로 평가 되었다. 이에 대한 이익 평가는 적게는 $14.6, 많게는 $452로 산정되었다. 또한 한국 기후변화 시장의 이산화탄소 시장 거래가로는 바이오차 0.2, 1 및 2% 시용 시 $35.6, $115.3 및 $428.2로 나타났다. 바이오차 시용에 대한 작물 재배에 있어, 초장과 수량은 처리간에 유의차가 인정되지 않았다. 따라서 본 실험결과는 농사활동에서 바이오차를 토양에 시용함으로서 탄소 배출건 거래제가 시행된다는 전제 조건하에 기초자료가 될 것이다.

Despite the ability of biochar to enhance soil fertility and to mitigate greenhouse gas, its carbon sequestration and profit analysis with arable land application have been a few evaluated. This study was conducted to estimate carbon sequestration and to evaluate profit of greenhouse gas mitigation during corn cultivation periods. For the experiment, the biochar application rates were consisted of pig compost(non application), 2,600(0.2%), 13,000(1%), and 26,000(2%) kg/ha based on pig compost application. For predicting soil carbon sequestration of biochar application, it was appeared to be linear model of Y = 0.5523X - 742.57 ($r^2=0.939^{**}$). Based on this equation, soil carbon sequestration by 0.2, 1 and 2% biochar application was estimated to be 1,235, 3,978, and 14,794 kg/ha, and their mitigations of $CO_2$-eq. emissions were estimated to be 4.5, 14.6, and 54.2 ton/ha, respectively. Their profits were estimated at $14.6 for lowest and $452 for highest. In Korea Climate Exchange, it was estimated that the market price of $CO_2$ in corn cultivation periods with 0.2, 1 and 2% biochar application was $35.6, $115.3 and $428.2 per hectare, respectively. For the plant growth response, it was observed that plant height and fresh ear yield were not significantly different among the treatments. Therefore, these experimental results might be fundamental data for assuming a carbon trading mechanism exists for biochar soil application in agricultural practices.

키워드

참고문헌

  1. Koocheki, A., and Nassiri Mahallati, M., "Impact of climate change and $CO_2$ concentration on wheat yield in Iran and adaptation strategies", Iran. J. Field Crops Res., 6(1), pp. 139-153. (2008).
  2. Koocheki, A., Nassiri, M., Kamali, G. A., and Shahandeh, H., "Potential impact of climate change on agro-meteorological indicators in Iran", Arid Land Res. Manag., 20, pp. 245-259. (2006). https://doi.org/10.1080/15324980600705768
  3. Koocheki, A., Nassiri, M., Soltani, A., Sharifi, H., and Ghorbani, R., "Effects of climate change on growth criteria and yield of sunflower and chickpea crops in Iran", Clim. Res., 30, pp. 247-253. (2006). https://doi.org/10.3354/cr030247
  4. Lal, L., "Soil carbon dynamics in cropland and rangeland. Environ". Pollut., 116, pp. 353-362. (2002). https://doi.org/10.1016/S0269-7491(01)00211-1
  5. Laird, A. D. "The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality". Agron. J., 100(1), pp. 178-184. (2008). https://doi.org/10.2134/agrojnl2007.0161
  6. Lehmann, J., Kern, D. C., Glaser, B., and Woods, W. I., Management. Kluwer Academic Publishers. (2004).
  7. MIFAFF, Annual Statistics in Food, Agriculture, Fisheries and Forestry in 2009, Korean Ministry for Food, Agriculture, Fisheries and Forestry. (2010).
  8. Hammes, K., and Schmidt, M., Changes in biochar in soil. In: Lemann, J., Joseph, S. (Eds.), Biochar for Environmental Management. Earthscan, pp. 169-182. (2009).
  9. Lehmann, J., Rilling, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., and Crowley, D., "Biochar effects on soil biota: a review", Soil Biol. and Biochem., 43, pp. 1812-1836. (2011). https://doi.org/10.1016/j.soilbio.2011.04.022
  10. Kimble, J. M., Lal, R., and Follett, R. R., Agricultural practices and policy options for carbon sequestration: What we know and where we need to go. In: Agricultural practices and policies for carbon sequestration in soil eds by Kimble, J. M., R. Lal, and R. F. Follet. New York, Lewis Publishers, p. 512. (2002).
  11. Batjes, N. H. "Total carbon and nitrogen in the soils of the world", European J. of Soil Sci., 47, 151-163. (1996). https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
  12. Chicago Climate Exchange (CCX), December 2008 market summary. CCS Market Report 5 (12), pp. 1-4. (2008) http://www.chicagoclimatex.com/docs/publications/CCS_carbonmkt_V5_i12_dec2008.pdf
  13. European Climate Exchange (ECX), Certified Emission Reduction Futures Contracts-2008 Historic Data. (2008). http://www.ecx.eu/CRE-Futures.
  14. Shin, J. D., Kim, S. I., Park, W. K., Choi, Y. S., Hong, S. G., and Park, S. W. "Carbon sequestration in soil cooperated with organic composts and bio-char during corn (Zea mays) cultivation", J. of Agri. Chem. and Envi. 3, pp. 151-155. (2014).
  15. Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., and Xu, X, "Black carbon decomposition and incorporation into soil microbial biomass estimated 14C labeling", Soil Biology and Biochemistry, 41, pp. 210-219. (2009). https://doi.org/10.1016/j.soilbio.2008.10.016
  16. Shin, J. D., Choi, Y. S., and Shin, J. H. "Profit Analysis by Soil Carbon Sequestration with different Composts and Cooperated with Biochar during Corn (Zea mays) Cultivation Periods in Sandy Loam Soil", J. of Agri. Chem. and Envi., 5, pp. 107-113. (2016).
  17. Deenik, J. L., McClellan, T., Uehara, M., Antal, M. J., and Campbell, S., "Charcol volatile matter content influences plant growth and soil nitrogen transformations". Soil Sci. Soc. Am. J., 74, pp. 1259-1270. (2010). https://doi.org/10.2136/sssaj2009.0115

피인용 문헌

  1. 배 전정지 바이오차 시용이 작물 생육 및 토양이화학성에 미치는 영향 vol.26, pp.4, 2016, https://doi.org/10.17137/korrae.2018.26.4.11
  2. 국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향 vol.27, pp.2, 2016, https://doi.org/10.17137/korrae.2019.27.2.19