DOI QR코드

DOI QR Code

혐기 소화 시 식물체 잔사 및 투입량에 따른 메탄 생산량 예측

Predicting Methane Production on Anaerobic Digestion to Crop Residues and Biomass Loading Rates

  • 신중두 (국립농업과학원 농업환경부 기후변화생태과) ;
  • 홍승길 (국립농업과학원 농업환경부 유기농업과) ;
  • 박상원 (국립농업과학원 농산물안전성부 화학물질안전과) ;
  • 김현욱 (서울시립대학교 환경공학과)
  • Shin, JoungDu (Climate Change and Agro-ecology Division, National Institute of Agricultural Sciences) ;
  • Hong, Seung-Gil (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Park, SangWon (Chemical Safety Division, National Institute of Agricultural Sciences) ;
  • Kim, HyunWook (Department of Environmental Engineering, University of Seoul)
  • 투고 : 2016.08.29
  • 심사 : 2016.09.07
  • 발행 : 2016.09.30

초록

본 연구의 목적은 농업에서 발생하는 식물체 잔사 종류별 투입비율에 따른 메탄 잠재 발생량을 예측하는 것이다. 바이오가스를 생산하기 위하여 보릿짚 및 유채대 등의 식물체 잔사를 다양한 투입율로 사용하여 세륨병에서 실험을 수행하였다. 표면 방법론의 운동방법을 통하여 메탄 생산은 Gomperz 수식에 적합한 것으로 나타났다. 중온소화 시 식물체 잔사별 바이오가스 생산에 있어, 최대생산량은 보릿짚 및 유채대 투입율 1%로 혐기소화 후 각각 6.8일에 37.2 mL/g과 7.5일에 28.0 mL/g로 나타났다. 중온소화 시 메탄 함량은 보릿짚 및 유채대 투입율 5%로 혐기소화 후 각각 5.5일에 61.7%와 3.4일에 75.0%로 가장 높게 관측되었다. 중온 소화시 최대 메탄 잠재발생량은 1% 보릿짚 투입율에서 159.59 mL/g 와 3% 유채대 투입율에서 156.62 mL/g로 산정되었다. 전반적으로 중온소화 시 바이오매스 투입율은 유채대 3% 및 보릿짚 1%를 투입하는 것이 적정 비율인 것으로 나타났다.

Objective of this experiment was to predict the potential methane production with crop residues at different loading rates. Anaerobic digestion of barley and rapeseed straw substrates for biogas production was performed in Duran bottles at various biomass loading rates with crop residues. Through kinetic model of surface methodology, the methane production was fitted to a Gompertz equation. For the biogas production at mesophilic digestion with crop residues, it was observed that maximum yield was 37.2 and 28.0 mL/g at 6.8 and 7.5 days after digestion with 1% biomass loading rates of barley and rapeseed straws, respectively. For the methane content of mesophilic digestion, there were highest at 61.7% after 5.5 days and 75.0% after 3.4 days of digestion with barley and rapeseed straw on both 5% biomass loading rates, respectively. The maximum methane production potentials were 159.59 mL/g for 1% barley straw and 156.62 mL/g for 3% rapeseed straw at mesophilic digestion. Overall, it would be strongly recommended that biomass loading rate was an optimum rate at mesophilic digestion for using 1% barley and 3% rapeseed straws for feed stocks.

키워드

참고문헌

  1. IPCC, IPCC special report on renewable energy sources and climate change mitigation, In: summary for policymakers, Cambridge University Press. (2011).
  2. Deublin, D. and Steinhauser, A., Biogas from waste and renewable resources, 2nd ed., Wiley-VCH Verlag GnbH & Co. (2011).
  3. Bauen, A., Woods, J. and Hailes, R., "BIOPOWER SWITCH; A biomass blueprint to meet 15% of OECD electricity demand by 2020", WWF Climate change program, p.26. (2004).
  4. Shin, J., Hong, S., Kwon, S., Park, W., Kim, G., Kim, S. and Yang, J., "Assessment of methane potential production with agricultural biomass in Korea", International workshop on bio-energy production and utilization in agricultural sector. pp. 49-69. (2010).
  5. Murto, M., Bjomsson, L. and Mattiasson, B., "Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure", J. Environ. Manag., 70(2), pp. 101-107. (2004). https://doi.org/10.1016/j.jenvman.2003.11.001
  6. Shin, J, Han, S., Eom, K., Sung S., Park, S. and Kim, H., "Predicting methane production potential of anaerobic co-digestion of swine manure and food waste", Environ. Eng. Res., 13(2), pp. 93-91. (2008). https://doi.org/10.4491/eer.2008.13.2.093
  7. Ghosh, S., Conrad, J. R. and Klass, D. L., "Anaerobic acidogenesis of wastewater sludge", J. Water Pollut. Control Fed., 47(1), pp. 30-45. (1975).
  8. Hawkes, F. R. and Hawkes, D. L. Anaerobic digestion, In: Bu'lock, J., Kristiansen, B. (Eds.), Basic Biotechnology, Academic Press, pp. 337-358. (1987).
  9. van Lier, J. B., Tilche, E., Ahring, B. K., Macarie, H., Moletta, R. and Dohanyos, M., "New perspectives in anaerobic digestion", Water Sci. Techn., 43(1), pp. 1-18. (2001).
  10. Forordning(2001: 512) om deponering av avfall, http:/www.notisum.se/rnp/sls/lag/ 200105012htm. (5/31/02, 2001).
  11. Shin, J., Park, S. Lee S., Kim, H., Lee R. and Kim M., "Effects of digestion temperatures and loading amounts on methane production from anaerobic digestion with crop residues", Carbon Lett., 16(4), pp. 265-269. (2015). https://doi.org/10.5714/CL.2015.16.4.265
  12. APHA-AWWA-WEF,. Standard methods for the examination of waster and wastewater, 20th ed. (1988).
  13. Schafter, P. L. and Farrel, J. B. "Advanced anaerobic digestion systems", Water Environ. Techn., 12(11), pp. 26-32. (2000).
  14. Yang, K., Yu, Y. and Hwang, S., "Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation", Water Res., 37, p. 2467. (2003). https://doi.org/10.1016/S0043-1354(03)00006-X
  15. Momirlan, M. and Veziroglu, T., "Recent directions of world hydrogen production", J. Renew Sustain Energy Rev., 3, pp. 219-231. (1999). https://doi.org/10.1016/S1364-0321(98)00017-3
  16. Chandra, R., Takeuchi, H., Hasegawa, T. and Kumar, R., "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments", Energy, 43, pp. 273-282. (2012). https://doi.org/10.1016/j.energy.2012.04.029
  17. Chandra, R., Takeuchi, H. and Hasegawa, T., "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production", J. Appl. Energy, 94, pp. 129-140. (2012). https://doi.org/10.1016/j.apenergy.2012.01.027
  18. Pohl, M., Mumme, J., Heeg, K. and Nettmann, E., "Thermo-and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process", Biores. Techn., 124, pp. 321-327. (2012). https://doi.org/10.1016/j.biortech.2012.08.063
  19. Lianhua, L., Dong, L., Yongming, S., Longlong, M., Zhenhong, Y. and Xiaoying, K., "Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China". Int. J. Hydrogen Energy, 35(13), pp. 7261-7266. (2010). https://doi.org/10.1016/j.ijhydene.2010.03.074
  20. Chae, K. J., Jang, A. M., Yim, S. K. and Kim, I. S., "The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure". Bioresour. Technol., 99(1), pp. 1-6. (2008). https://doi.org/10.1016/j.biortech.2006.11.063
  21. Lay, J. J., "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose". Biotechnol. Bioeng., 74(4), pp. 280-287. (2001). https://doi.org/10.1002/bit.1118
  22. Lehtomeki, A., Huttunen, S. and Rintala, J. A., "Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio", Res. Conserv. Recy., 51(3), 591-609. (2007). https://doi.org/10.1016/j.resconrec.2006.11.004
  23. Gunaseelan, V. N., "Anaerobic digestion of biomass for methane production: a review". Biomass and bioenergy, 13(1), 83-114. (1997). https://doi.org/10.1016/S0961-9534(97)00020-2