DOI QR코드

DOI QR Code

Brain Reward Circuits in Morphine Addiction

  • Kim, Juhwan (Center for Neuroscience, Brain Science Institute) ;
  • Ham, Suji (Center for Neuroscience, Brain Science Institute) ;
  • Hong, Heeok (Department of Medical Science, Konkuk University School of Medicine) ;
  • Moon, Changjong (Department of Veterinary Anatomy, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University) ;
  • Im, Heh-In (Center for Neuroscience, Brain Science Institute)
  • 투고 : 2016.06.01
  • 심사 : 2016.07.20
  • 발행 : 2016.09.30

초록

Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate's innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences.

키워드

참고문헌

  1. Ahmad, T., Lauzon, N.M., de Jaeger, X., and Laviolette, S.R. (2013). Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus mu-opiate receptor dependent mechanisms. J. Neurosci. 33, 15642-15651. https://doi.org/10.1523/JNEUROSCI.1686-13.2013
  2. Ambroggi, F., Ishikawa, A., Fields, H.L. , and Nicola, S.M. (2008). Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59, 648-661. https://doi.org/10.1016/j.neuron.2008.07.004
  3. Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider, F., and Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. (Berl.) 210, 343-352. https://doi.org/10.1007/s00429-005-0025-5
  4. Baimel, C., and Borgland, S.L. (2015). Orexin signaling in the VTA gates morphine-induced synaptic plasticity. J. Neurosci. 35, 7295-7303. https://doi.org/10.1523/JNEUROSCI.4385-14.2015
  5. Beitner-Johnson, D., and Nestler, E.J. (1991). Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J. Neurochem. 57, 344-347. https://doi.org/10.1111/j.1471-4159.1991.tb02133.x
  6. Bishop, S.F., Lauzon, N.M., Bechard, M., Gholizadeh, S., and Laviolette, S.R. (2011). NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates. Cereb. Cortex 21, 68-80. https://doi.org/10.1093/cercor/bhq060
  7. Bissiere, S., Humeau, Y., and Luthi, A. (2003). Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6, 587-592. https://doi.org/10.1038/nn1058
  8. Bontempi, B., and Sharp, F.R. (1997). Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area. J. Neurosci. 17, 8596-8612. https://doi.org/10.1523/JNEUROSCI.17-21-08596.1997
  9. Bunzeck, N., Doeller, C.F., Dolan, R.J., and Duzel, E. (2012). Contextual interaction between novelty and reward processing within the mesolimbic system. Hum. Brain Mapp. 33, 1309-1324. https://doi.org/10.1002/hbm.21288
  10. Cason, A.M., Smith, R.J., Tahsili-Fahadan, P., Moorman, D.E., Sartor, G.C., and Aston-Jones, G. (2010). Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol. Behav. 100, 419-428. https://doi.org/10.1016/j.physbeh.2010.03.009
  11. Cazala, P., Darracq, C., and Saint-Marc, M. (1987). Selfadministration of morphine into the lateral hypothalamus in the mouse. Brain Res. 416, 283-288. https://doi.org/10.1016/0006-8993(87)90908-5
  12. Chartoff, E.H., Mague, S.D., Barhight, M.F., Smith, A.M., and Carlezon, W.A., Jr. (2006). Behavioral and molecular effects of dopamine D1 receptor stimulation during naloxone-precipitated morphine withdrawal. J. Neurosci. 26, 6450-6457. https://doi.org/10.1523/JNEUROSCI.0491-06.2006
  13. Chase, H.W., Eickhoff, S.B., Laird, A.R., and Hogarth, L. (2011). The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol. Psychiatry 70, 785-793. https://doi.org/10.1016/j.biopsych.2011.05.025
  14. Chefer, V.I., and Shippenberg, T.S. (2009). Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 34, 887-898. https://doi.org/10.1038/npp.2008.128
  15. Clark, J.D. (2002). Chronic pain prevalence and analgesic prescribing in a general medical population. J. Pain Symptom Manage. 23, 131-137. https://doi.org/10.1016/S0885-3924(01)00396-7
  16. Coque, L., Mukherjee, S., Cao, J.L., Spencer, S., Marvin, M., Falcon, E., Sidor, M.M., Birnbaum, S.G., Graham, A., Neve, R.L., et al. (2011). Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. Neuropsychopharmacology 36, 1478-1488. https://doi.org/10.1038/npp.2011.33
  17. Cossu, G., Ledent, C., Fattore, L., Imperato, A., Bohme, G.A., Parmentier, M., and Fratta, W. (2001). Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse. Behav. Brain Res. 118, 61-65. https://doi.org/10.1016/S0166-4328(00)00311-9
  18. Dacher, M., and Nugent, F.S. (2011). Morphine-induced modulation of LTD at GABAergic synapses in the ventral tegmental area. Neuropharmacology 61, 1166-1171. https://doi.org/10.1016/j.neuropharm.2010.11.012
  19. Darbandi, N., Rezayof, A., and Zarrindast, M.R. (2008). Modulation of morphine state-dependent learning by muscarinic cholinergic receptors of the ventral tegmental area. Physiol. Behav. 94, 604-610. https://doi.org/10.1016/j.physbeh.2008.04.001
  20. Daubner, S.C., Le, T., and Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 508, 1-12. https://doi.org/10.1016/j.abb.2010.12.017
  21. Dazzi, L., Talani, G., Biggio, F., Utzeri, C., Lallai, V., Licheri, V., Lutzu, S., Mostallino, M.C., Secci, P.P., Biggio, G., et al. (2014). Involvement of the cannabinoid CB1 receptor in modulation of dopamine output in the prefrontal cortex associated with food restriction in rats. PLoS One 9, e92224. https://doi.org/10.1371/journal.pone.0092224
  22. de Guglielmo, G., Melis, M., De Luca, M.A., Kallupi, M., Li, H.W., Niswender, K., Giordano, A., Senzacqua, M., Somaini, L., Cippitelli, A., et al. (2015). PPARgamma activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology 40, 927-937. https://doi.org/10.1038/npp.2014.268
  23. De Jaeger, X., Bishop, S.F., Ahmad, T., Lyons, D., Ng, G.A., and Laviolette, S.R. (2013). The effects of AMPA receptor blockade in the prelimbic cortex on systemic and ventral tegmental area opiate reward sensitivity. Psychopharmacology (Berl.) 225, 687-695. https://doi.org/10.1007/s00213-012-2852-4
  24. de Lecea, L., Kilduff, T.S., Peyron, C., Gao, X., Foye, P.E., Danielson, P.E., Fukuhara, C., Battenberg, E.L., Gautvik, V.T., Bartlett, F.S., 2nd, et al. (1998). The hypocretins: hypothalamusspecific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 95, 322-327. https://doi.org/10.1073/pnas.95.1.322
  25. De Luca, M.A., Bimpisidis, Z., Bassareo, V., and Di Chiara, G. (2011). Influence of morphine sensitization on the responsiveness of mesolimbic and mesocortical dopamine transmission to appetitive and aversive gustatory stimuli. Psychopharmacology (Berl.). 216, 345-353. https://doi.org/10.1007/s00213-011-2220-9
  26. De Rover, M., Lodder, J.C., Schoffelmeer, A.N., and Brussaard, A.B. (2005). Intermittent morphine treatment induces a longlasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats. Synapse 55, 17-25. https://doi.org/10.1002/syn.20087
  27. Devine, D.P., Leone, P., Pocock, D., and Wise, R.A. (1993). Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J. Pharmacol. Exp. Ther. 266, 1236-1246.
  28. Dong, H.W., Petrovich, G.D., Watts, A.G., and Swanson, L.W. (2001). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J. Comp. Neurol. 436, 430-455. https://doi.org/10.1002/cne.1079
  29. Dumont, E.C., Rycroft, B.K., Maiz, J., and Williams, J.T. (2008). Morphine produces circuit-specific neuroplasticity in the bed nucleus of the stria terminalis. Neuroscience 153, 232-239. https://doi.org/10.1016/j.neuroscience.2008.01.039
  30. Eisch, A.J., Barrot, M., Schad, C.A., Self, D.W., and Nestler, E.J. (2000). Opiates inhibit neurogenesis in the adult rat hippocampus. Proc. Natl. Acad. Sci. USA 97, 7579-7584. https://doi.org/10.1073/pnas.120552597
  31. Esmaeili, M.H., Kermani, M., Parvishan, A., and Haghparast, A. (2012). Role of D1/D2 dopamine receptors in the CA1 region of the rat hippocampus in the rewarding effects of morphine administered into the ventral tegmental area. Behav. Brain Res. 231, 111-115. https://doi.org/10.1016/j.bbr.2012.02.050
  32. Everitt, B.J. (2014). Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories--indications for novel treatments of addiction. Eur. J. Neurosci. 40, 2163-2182. https://doi.org/10.1111/ejn.12644
  33. Everitt, B.J., Parkinson, J.A., Olmstead, M.C., Arroyo, M., Robledo, P., and Robbins, T.W. (1999). Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann. N Y Acad. Sci. 877, 412-438. https://doi.org/10.1111/j.1749-6632.1999.tb09280.x
  34. Everitt, B.J., and Robbins, T.W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci. Biobehav. Rev. 37, 1946-1954. https://doi.org/10.1016/j.neubiorev.2013.02.010
  35. Fields, H.L., and Margolis, E.B. (2015). Understanding opioid reward. Trends Neurosci. 38, 217-225. https://doi.org/10.1016/j.tins.2015.01.002
  36. Finnegan, T.F., Chen, S.R., and Pan, H.L. (2006). Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J. Neurophysiol. 95, 2032-2041. https://doi.org/10.1152/jn.01004.2005
  37. Ford, C.P., Mark, G.P., and Williams, J.T. (2006). Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J. Neurosci. 26, 2788-2797. https://doi.org/10.1523/JNEUROSCI.4331-05.2006
  38. Fuchs, R.A., Evans, K.A., Ledford, C.C., Parker, M.P., Case, J.M., Mehta, R.H., and See, R.E. (2005). The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30, 296-309. https://doi.org/10.1038/sj.npp.1300579
  39. Gao, J., Li Y., Zhu, N., Brimijoin, S., and Sui, N. (2013). Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1- and D2-like receptor mechanisms in rats. J. Psychopharmacol. 27, 181-191. https://doi.org/10.1177/0269881112466181
  40. Gasbarri, A., Sulli, A., and Packard, M.G. (1997). The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 1-22. https://doi.org/10.1016/S0278-5846(96)00157-1
  41. Georgescu, D., Zachariou, V., Barrot, M., Mieda, M., Willie, J.T., Eisch, A.J., Yanagisawa, M., Nestler E.J., and DiLeone R.J. (2003). Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106-3111. https://doi.org/10.1523/JNEUROSCI.23-08-03106.2003
  42. Gholizadeh, S., Sun, N., De Jaeger, X., Bechard, M., Coolen, L., and Laviolette, S.R. (2013). Early versus late-phase consolidation of opiate reward memories requires distinct molecular and temporal mechanisms in the amygdala-prefrontal cortical pathway. PLoS One 8, e63612. https://doi.org/10.1371/journal.pone.0063612
  43. Gretton, S.K., Ross, J.R., Rutter, D., Sato, H., Droney, J.M., Welsh, K.I., Joel, S., and Riley, J. (2013). Plasma morphine and metabolite concentrations are associated with clinical effects of morphine in cancer patients. J. Pain Symptom Manage. 45, 670-680. https://doi.org/10.1016/j.jpainsymman.2012.03.015
  44. Guo, N., Garcia, M.M., and Harlan, R.E. (2008). A morphine-paired environment alters c-Fos expression in the forebrain of rats displaying conditioned place preference or aversion. Behav. Neurosci. 122, 1078-1086. https://doi.org/10.1037/a0012595
  45. Haghparast, A., Esmaeili, M.H., Taslimi, Z., Kermani, M., Yazdi-Ravandi, S., and Alizadeh, A.M. (2013). Intrahippocampal administration of D2 but not D1 dopamine receptor antagonist suppresses the expression of conditioned place preference induced by morphine in the ventral tegmental area. Neurosci. Lett. 541, 138-143. https://doi.org/10.1016/j.neulet.2013.03.001
  46. Han, H., Dong, Z., Jia, Y., Mao, R., Zhou, Q., Yang, Y., Wang, L., Xu, L., and Cao, J. (2015). Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci. Rep. 5, 9666. https://doi.org/10.1038/srep09666
  47. Harris, G.C., Wimmer, M., and Aston-Jones, G. (2005). A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556-559. https://doi.org/10.1038/nature04071
  48. Jalabert, M., Bourdy, R., Courtin, J., Veinante, P., Manzoni, O.J., Barrot, M., and Georges, F. (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proc. Natl. Acad. Sci. USA 108, 16446-16450. https://doi.org/10.1073/pnas.1105418108
  49. Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224-228. https://doi.org/10.1038/nature12041
  50. Karimi, S., Azizi, P., Shamsizadeh, A., and Haghparast, A. (2013). Role of intra-accumbal cannabinoid CB1 receptors in the potentiation, acquisition and expression of morphine-induced conditioned place preference. Behav. Brain Res. 247, 125-131. https://doi.org/10.1016/j.bbr.2013.03.022
  51. Kaufling, J., and Aston-Jones, G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. J. Neurosci. 35, 10290-10303. https://doi.org/10.1523/JNEUROSCI.0715-15.2015
  52. Keleta, Y.B., and Martinez, J.L. (2012). Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop. Brain Behav 2, 128-141. https://doi.org/10.1002/brb3.35
  53. Khaleghzadeh-Ahangar, H., and Haghparast, A. (2015). Intraaccumbal CB1 receptor blockade reduced extinction and reinstatement of morphine. Physiol. Behav. 149, 212-219. https://doi.org/10.1016/j.physbeh.2015.06.005
  54. Koo, J.W., Mazei-Robison, M.S., Chaudhury, D., Juarez, B., LaPlant, Q., Ferguson, D., Feng, J., Sun H., Scobie, K.N., Damez-Werno, D., et al. (2012). BDNF is a negative modulator of morphine action. Science 338, 124-128. https://doi.org/10.1126/science.1222265
  55. Koob, G.F., and Volkow, N.D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35, 217-238. https://doi.org/10.1038/npp.2009.110
  56. Kudo, T., Uchigashima, M., Miyazaki, T., Konno, K., Yamasaki, M., Yanagawa, Y., Minami, M., and Watanabe, M. (2012). Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J. Neurosci. 32, 18035-18046. https://doi.org/10.1523/JNEUROSCI.4057-12.2012
  57. Kudo, T., Konno, K., Uchigashima, M., Yanagawa, Y., Sora, I., Minami, M., and Watanabe, M. (2014). GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalinmediated inhibitory inputs from the bed nucleus of the stria terminalis. Eur. J. Neurosci. 39, 1796-1809. https://doi.org/10.1111/ejn.12503
  58. Kufahl, P.R., Li, Z., Risinger, R.C., Rainey, C.J., Wu, G., Bloom, A.S., and Li, S.J. (2005). Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage 28, 904-914. https://doi.org/10.1016/j.neuroimage.2005.06.039
  59. Kumar, K., Kelly, M., and Pirlot, T. (2001). Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: long-term benefits and efficacy. Surg. Neurol. 55, 79-86; discussion 86-78. https://doi.org/10.1016/S0090-3019(01)00353-6
  60. Leah, P.M., Heath, E.M., Balleine, B.W., and Christie, M.J. (2015). Chronic morphine reduces surface expression of delta-opioid receptors in subregions of rostral striatum. Neurochem. Res. 41, 500-509.
  61. Lecca, D., Valentini, V., Cacciapaglia, F., Acquas, E., and Di Chiara, G. (2007). Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacology (Berl.) 194, 103-116. https://doi.org/10.1007/s00213-007-0815-y
  62. Lecca, S., Melis, M., Luchicchi, A., Muntoni, A.L., and Pistis, M. (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37, 1164-1176. https://doi.org/10.1038/npp.2011.302
  63. LeResche, L., Saunders, K., Dublin, S., Thielke, S., Merrill, J.O., Shortreed, S.M., Campbell, C., and Von Korff, M.R. (2015). Sex and age differences in global pain status among patients using opioids long term for chronic noncancer pain. J. Womens Health (Larchmt). 24, 629-635. https://doi.org/10.1089/jwh.2015.5222
  64. Li, T., Yan, C.X., Hou, Y., Cao, W., Chen, T., Zhu, B.F., and Li, S.B. (2008). Cue-elicited drug craving represses ERK activation in mice prefrontal association cortex. Neurosci. Lett. 448, 99-104. https://doi.org/10.1016/j.neulet.2008.10.033
  65. Li, C., Pleil, K.E., Stamatakis, A.M., Busan, S., Vong, L., Lowell, B.B., Stuber, G.D., and Kash, T.L. (2012). Presynaptic inhibition of gamma-aminobutyric acid release in the bed nucleus of the stria terminalis by kappa opioid receptor signaling. Biol. Psychiatry 71, 725-732. https://doi.org/10.1016/j.biopsych.2011.11.015
  66. Liang, J., Ma, S.S., Li, Y.J., Ping, X.J., Hu, L., and Cui, C.L. (2012). Dynamic changes of tyrosine hydroxylase and dopamine concentrations in the ventral tegmental area-nucleus accumbens projection during the expression of morphine-induced conditioned place preference in rats. Neurochem. Res. 37, 1482-1489. https://doi.org/10.1007/s11064-012-0739-8
  67. Lintas, A., Chi, N., Lauzon, N.M., Bishop, S.F., Gholizadeh, S., Sun, N., Tan, H., and Laviolette, S.R. (2011). Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit. J. Neurosci. 31, 11172-11183. https://doi.org/10.1523/JNEUROSCI.1781-11.2011
  68. Lintas, A., Chi, N., Lauzon, N.M., Bishop, S.F., Sun, N., Tan, H., and Laviolette, S.R. (2012). Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission. Eur. J. Neurosci. 35, 279-290. https://doi.org/10.1111/j.1460-9568.2011.07943.x
  69. Lisman, J.E., and Grace, A.A. (2005). The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703-713. https://doi.org/10.1016/j.neuron.2005.05.002
  70. Lu, G., Zhou, Q.X., Kang, S., Li, Q.L., Zhao, L.C., Chen, J.D., Sun, J.F., Cao, J., Wang, Y.J., Chen, J., et al. (2010). Chronic morphine treatment impaired hippocampal long-term potentiation and spatial memory via accumulation of extracellular adenosine acting on adenosine A1 receptors. J. Neurosci. 30, 5058-5070. https://doi.org/10.1523/JNEUROSCI.0148-10.2010
  71. Luo, A.H., Tahsili-Fahadan, P., Wise, R.A., Lupica, C.R., and Aston-Jones, G. (2011). Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333, 353-357. https://doi.org/10.1126/science.1204622
  72. Ma, D.Y., Xu, M.Y., Yang, H.C., and Yang, L.Z. (2008). Effect of inhibition of the central nucleus of the amygdala and drug experience on the regions underlying footshock-induced reinstatement of morphine seeking. J. Int. Med. Res. 36, 992-1000. https://doi.org/10.1177/147323000803600516
  73. Mamoon, A.M., Barnes, A.M., Ho, I.K., and Hoskins, B. (1995). Comparative rewarding properties of morphine and butorphanol. Brain Res. Bull. 38, 507-511. https://doi.org/10.1016/0361-9230(95)02022-J
  74. Manchikanti, L., Abdi, S., Atluri, S., Balog, C.C., Benyamin, R.M., Boswell, M.V., Brown, K.R., Bruel, B.M., Bryce, D.A., Burks, P.A., et al. (2012). American Society of Interventional Pain Physicians (ASIPP). guidelines for responsible opioid prescribing in chronic non-cancer pain: Part I--evidence assessment. Pain Physician 15, S1-65.
  75. Melis, M., Gessa, G.L., and Diana, M. (2000). Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog. Neuropsychopharmacol. Biol. Psychiatry 24, 993-1006. https://doi.org/10.1016/S0278-5846(00)00119-6
  76. Mercadante, S. (1999). Problems of long-term spinal opioid treatment in advanced cancer patients. Pain 79, 1-13. https://doi.org/10.1016/S0304-3959(98)00118-3
  77. Merkle, F.T., Maroof, A., Wataya, T., Sasai, Y., Studer, L., Eggan, K., and Schier, A.F. (2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142, 633-643. https://doi.org/10.1242/dev.117978
  78. Milad, M.R., and Quirk, G.J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70-74. https://doi.org/10.1038/nature01138
  79. Miller, A.D., Forster, G.L., Yeomans, J.S., and Blaha, C.D. (2005). Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136, 531-538. https://doi.org/10.1016/j.neuroscience.2005.08.035
  80. Muller, D.L., and Unterwald, E.M. (2005). D1 dopamine receptors modulate deltaFosB induction in rat striatum after intermittent morphine administration. J. Pharmacol. Exp. Ther. 314, 148-154. https://doi.org/10.1124/jpet.105.083410
  81. Narita, M., Matsushima, Y., Niikura, K., Narita, M., Takagi, S., Nakahara, K., Kurahashi, K., Abe, M., Saeki, M., Asato, M., et al. (2010). Implication of dopaminergic projection from the ventral tegmental area to the anterior cingulate cortex in mu-opioidinduced place preference. Addict. Biol. 15, 434-447. https://doi.org/10.1111/j.1369-1600.2010.00249.x
  82. Nestler, E.J. (2004). Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 25, 210-218. https://doi.org/10.1016/j.tips.2004.02.005
  83. Neugebauer, N.M., Einstein, E.B., Lopez, M.B., McClure-Begley, T.D., Mineur, Y.S., and Picciotto, M.R. (2013). Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacol. Biochem. Behav. 109, 77-83. https://doi.org/10.1016/j.pbb.2013.04.015
  84. Nguyen, T.L., Kwon, S.H., Hong, S.I., Ma, S.X., Jung, Y.H., Hwang, J.Y., Kim, H.C., Lee, S.Y., and Jang, C.G. (2014). Transient receptor potential vanilloid type 1 channel may modulate opioid reward. Neuropsychopharmacology 39, 2414-2422. https://doi.org/10.1038/npp.2014.90
  85. Nunez, C., Martin, F., Foldes, A., Luisa Laorden, M., Kovacs, K.J., and Victoria Milanes, M. (2010). Induction of FosB/DeltaFosB in the brain stress system-related structures during morphine dependence and withdrawal. J. Neurochem. 114, 475-487. https://doi.org/10.1111/j.1471-4159.2010.06765.x
  86. Olmstead, M.C., and Franklin, K.B. (1997). The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav. Neurosci. 111, 1324-1334. https://doi.org/10.1037/0735-7044.111.6.1324
  87. Peters, J. and De Vries, T.J. (2012). Glutamate mechanisms underlying opiate memories. Cold Spring Harb. Perspect. Med. 2, a012088.
  88. Pickel, V.M., Chan, J., Kash, T.L., Rodriguez, J.J., and MacKie, K. (2004). Compartment-specific localization of cannabinoid 1 (CB1). and mu-opioid receptors in rat nucleus accumbens. Neuroscience 127, 101-112. https://doi.org/10.1016/j.neuroscience.2004.05.015
  89. Polissidis, A., Galanopoulos, A., Naxakis, G., Papahatjis, D., Papadopoulou-Daifoti, Z., and Antoniou, K. (2013). The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int. J. Neuropsychopharmacol. 16, 393-403. https://doi.org/10.1017/S1461145712000156
  90. Pontieri, F.E., Tanda, G., and Di Chiara, G. (1995). Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the "shell" as compared with the "core" of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92, 12304-12308. https://doi.org/10.1073/pnas.92.26.12304
  91. Pu, L., Bao, G.B., Xu, N.J., Ma, L., and Pei, G. (2002). Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J. Neurosci. 22, 1914-1921. https://doi.org/10.1523/JNEUROSCI.22-05-01914.2002
  92. Quirk, G.J., and Mueller, D. (2008). Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56-72. https://doi.org/10.1038/sj.npp.1301555
  93. Rashidy-Pour, A., Pahlevani, P., Vaziri, A., Shaigani, P., Zarepour, L., Vafaei, A.A. and Haghparast, A. (2013). Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model. Behav. Brain Res. 247, 259-267. https://doi.org/10.1016/j.bbr.2013.03.015
  94. Razavi, Y., Karimi, S., Bani-Ardalan, M., and Haghparast, A. (2014). Chemical stimulation of the lateral hypothalamus potentiated the sensitization to morphine in rats: involvement of orexin-1 receptor in the ventral tegmental area. EXCLI J. 13, 1120-1130.
  95. Rei, D., Mason, X., Seo, J., Graff, J., Rudenko, A., Wang, J., Rueda, R., Siegert, S., Cho, S., Canter, R.G., et al. (2015). Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proc. Natl. Acad. Sci. USA 112, 7291-7296. https://doi.org/10.1073/pnas.1415845112
  96. Rezayof, A., Zarrindast, M.R., Sahraei, H., and Haeri-Rohani, A.H. (2002). Involvement of dopamine D2 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Pharmacol. Biochem. Behav. 74, 187-197. https://doi.org/10.1016/S0091-3057(02)00989-9
  97. Rezayof, A., Nazari-Serenjeh, F., Zarrindast, M.R., Sepehri, H., and Delphi, L. (2007). Morphine-induced place preference: involvement of cholinergic receptors of the ventral tegmental area. Eur. J. Pharmacol. 562, 92-102. https://doi.org/10.1016/j.ejphar.2007.01.081
  98. Rezayof, A., Darbandi, N., and Zarrindast, M.R. (2008). Nicotinic acetylcholine receptors of the ventral tegmental area are involved in mediating morphine-state-dependent learning. Neurobiol. Learn. Mem. 90, 255-260. https://doi.org/10.1016/j.nlm.2008.03.004
  99. Rezayof, A., Hosseini, S.S., and Zarrindast, M.R. (2009). Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav. Brain Res. 202, 171-178. https://doi.org/10.1016/j.bbr.2009.03.030
  100. Richardson, K.A., and Aston-Jones, G. (2012). Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J. Neurosci. 32, 3809-3817. https://doi.org/10.1523/JNEUROSCI.3917-11.2012
  101. Rosen, L.G., Zunder, J., Renard, J., Fu, J., Rushlow, W., and Laviolette, S.R. (2015). Opiate exposure state controls a D2-CaMKIIalpha-dependent memory switch in the amygdalaprefrontal cortical circuit. Neuropsychopharmacology 41, 847-857.
  102. Russo, S.J., Bolanos C.A., Theobald D.E., DeCarolis N.A., Renthal W., Kumar A., Winstanley C.A., Renthal N.E., Wiley M.D., Self D.W., et al. (2007). IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat. Neurosci. 10, 93-99. https://doi.org/10.1038/nn1812
  103. Sakurai, T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R.M., Tanaka H., Williams S.C., Richardson J.A., Kozlowski G.P., Wilson S., et al. (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573-585. https://doi.org/10.1016/S0092-8674(00)80949-6
  104. Schott, B.H., Sellner, D.B., Lauer, C.J., Habib, R., Frey, J.U., Guderian, S., Heinze, H.J., and Duzel, E. (2004). Activation of midbrain structures by associative novelty and the formation of explicit memory in humans. Learn. Mem. 11, 383-387. https://doi.org/10.1101/lm.75004
  105. Schug, S.A., Zech, D., Grond, S., Jung, H., Meuser, T., and Stobbe, B. (1992). A long-term survey of morphine in cancer pain patients. J. Pain Symptom Manage. 7, 259-266. https://doi.org/10.1016/0885-3924(92)90059-Q
  106. Schultheiss, R., Schramm, J., and Neidhardt, J. (1992). Dose changes in long- and medium-term intrathecal morphine therapy of cancer pain. Neurosurgery 31, 664-669; discussion 669-670. https://doi.org/10.1227/00006123-199210000-00008
  107. Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36, 241-263. https://doi.org/10.1016/S0896-6273(02)00967-4
  108. Sesack, S.R., and Carr, D.B. (2002). Physiol. Behav. 77, 513-517.
  109. Stamatakis, A.M., Sparta, D.R., Jennings, J.H., McElligott, Z.A., Decot, H., and Stuber, G.D. (2014). Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 76 (Pt B), 320-328. https://doi.org/10.1016/j.neuropharm.2013.05.046
  110. Steidl, S., and Yeomans, J.S. (2009). M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J. Pharmacol. Exp. Ther. 328, 263-275. https://doi.org/10.1124/jpet.108.144824
  111. Suto, N., Wise, R.A., and Vezina, P. (2011). Dorsal as well as ventral striatal lesions affect levels of intravenous cocaine and morphine self-administration in rats. Neurosci. Lett. 493, 29-32. https://doi.org/10.1016/j.neulet.2011.02.011
  112. Szabo, B., Siemes, S., and Wallmichrath, I. (2002). Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoids. Eur. J. Neurosci. 15, 2057-2061. https://doi.org/10.1046/j.1460-9568.2002.02041.x
  113. Tan, K.R., Yvon, C., Turiault, M., Mirzabekov, J.J., Doehner, J., Labouebe, G., Deisseroth, K., Tye, K.M., and Luscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173-1183. https://doi.org/10.1016/j.neuron.2012.02.015
  114. Tan, H., Rosen, L.G., Ng, G.A., Rushlow, W.J., and Laviolette, S.R. (2014). NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling. Psychopharmacology (Berl.). 231, 4669-4679. https://doi.org/10.1007/s00213-014-3616-0
  115. Tanda, G., Pontieri, F.E., and Di Chiara, G. (1997). Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276, 2048-2050. https://doi.org/10.1126/science.276.5321.2048
  116. Taylor, A.M., Castonguay, A., Ghogha, A., Vayssiere, P., Pradhan, A.A., Xue, L., Mehrabani, S., Wu, J., Levitt, P., Olmstead, M.C., et al. (2015). Neuroimmune regulation of GABAergic neurons within the ventral tegmental area during withdrawal from chronic Morphine. Neuropsychopharmacology 41, 949-959.
  117. Trujillo, K.A., and Akil, H. (1991). Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251, 85-87. https://doi.org/10.1126/science.1824728
  118. van Zessen, R., Phillips, J.L., Budygin, E.A., and Stuber, G.D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184-1194. https://doi.org/10.1016/j.neuron.2012.02.016
  119. Ventura, R., Alcaro, A., and Puglisi-Allegra, S. (2005). Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb. Cortex 15, 1877-1886. https://doi.org/10.1093/cercor/bhi066
  120. Watanabe, T., Nakagawa, T., Yamamoto, R., Maeda, A., Minami, M., and Satoh, M. (2003). Involvement of noradrenergic system within the central nucleus of the amygdala in naloxoneprecipitated morphine withdrawal-induced conditioned place aversion in rats. Psychopharmacology (Berl.). 170, 80-88. https://doi.org/10.1007/s00213-003-1504-0
  121. Yu, G., Yan, H., and Gong, Z.H. (2012). Differential effects of acute and repeated morphine treatment on kappa-opioid receptor mRNA levels in mesocorticolimbic system. Pharmacol. Rep. 64, 445-448. https://doi.org/10.1016/S1734-1140(12)70786-7
  122. Zarrindast, M.R., Rezayof, A., Sahraei, H., Haeri-Rohani, A., and Rassouli, Y. (2003). Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res. 965, 212-221. https://doi.org/10.1016/S0006-8993(02)04201-4
  123. Zarrindast, M.R., Nouri, M., and Ahmadi, S. (2007). Cannabinoid CB1 receptors of the dorsal hippocampus are important for induction of conditioned place preference (CPP). but do not change morphine CPP. Brain Res. 1163, 130-137. https://doi.org/10.1016/j.brainres.2007.06.015
  124. Zarrindast, M.R., Eslahi, N., Rezayof, A., Rostami, P., and Zahmatkesh, M. (2013). Modulation of ventral tegmental area dopamine receptors inhibit nicotine-induced anxiogenic-like behavior in the central amygdala. Prog. Neuropsychopharmacol. Biol. Psychiatry 41, 11-17. https://doi.org/10.1016/j.pnpbp.2012.09.004
  125. Ziolkowska, B., Gieryk, A., Solecki, W., and Przewlocki, R. (2015). Temporal and anatomic patterns of immediate-early gene expression in the forebrain of C57BL/6 and DBA/2 mice after morphine administration. Neuroscience 284, 107-124. https://doi.org/10.1016/j.neuroscience.2014.09.069
  126. Zhou, Y., Bendor, J., Hofmann, L., Randesi, M., Ho, A., and Kreek, M.J. (2006). Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J. Endocrinol. 191, 137-145. https://doi.org/10.1677/joe.1.06960

피인용 문헌

  1. Reduction of Neurogenesis with Social Isolation Decreases Pain Sensitivity in Tail Flick Test in Male Rats vol.07, pp.02, 2017, https://doi.org/10.4236/wjns.2017.72018
  2. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using 1 H MRS vol.7, pp.8, 2017, https://doi.org/10.1002/brb3.769
  3. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics vol.125, pp.5, 2017, https://doi.org/10.1213/ANE.0000000000002442
  4. Intravenous morphine self-administration alters accumbal microRNA profiles in the mouse brain vol.13, pp.1, 2018, https://doi.org/10.4103/1673-5374.224374
  5. Treatment of opioid dependence with buprenorphine/naloxone sublingual tablets: A phase 3 randomized, double-blind, placebo-controlled trial pp.17585864, 2018, https://doi.org/10.1111/appy.12344
  6. Morphine Dependence is Attenuated by Treatment of 3,4,5-Trimethoxy Cinnamic Acid in Mice and Rats pp.1573-6903, 2019, https://doi.org/10.1007/s11064-019-02720-9
  7. Adolescence versus adulthood: Differences in basal mesolimbic and nigrostriatal dopamine transmission and response to drugs of abuse pp.13556215, 2019, https://doi.org/10.1111/adb.12721
  8. Prolonged Morphine Treatment Alters Expression and Plasma Membrane Distribution of β-Adrenergic Receptors and Some Other Components of Their Signaling System in Rat Cerebral Cortex vol.63, pp.3, 2016, https://doi.org/10.1007/s12031-017-0987-9
  9. Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain vol.41, pp.5, 2016, https://doi.org/10.14348/molcells.2018.0023
  10. Long non-coding RNA MEG3 attends to morphine-mediated autophagy of HT22 cells through modulating ERK pathway vol.57, pp.1, 2016, https://doi.org/10.1080/13880209.2019.1651343
  11. Longitudinal FDG-PET scan study of brain changes in mice with cancer-induced bone pain and after morphine analgesia vol.15, pp.None, 2016, https://doi.org/10.1177/1744806919841194
  12. Altered Activity of SK Channel Underpins Morphine Withdrawal Relevant Psychiatric Deficiency in Infralimbic to Accumbens Shell Pathway vol.10, pp.None, 2019, https://doi.org/10.3389/fpsyt.2019.00240
  13. Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats vol.392, pp.11, 2016, https://doi.org/10.1007/s00210-019-01678-3
  14. Anhedonia as a Key Clinical Feature in the Maintenance and Treatment of Opioid Use Disorder vol.7, pp.6, 2016, https://doi.org/10.1177/2167702619855659
  15. Morphine Addiction and Oxidative Stress: The Potential Effects of Thioredoxin-1 vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.00082
  16. Melanin-concentrating hormone in rat nucleus accumbens or lateral hypothalamus differentially impacts morphine and food seeking behaviors vol.34, pp.4, 2016, https://doi.org/10.1177/0269881119895521
  17. A Systematic Review of the Relative Frequency and Risk Factors for Prolonged Opioid Prescription Following Surgery and Trauma Among Adults vol.271, pp.5, 2020, https://doi.org/10.1097/sla.0000000000003403
  18. The effect of epigallocatechin-3-gallate on morphine-induced memory impairments in rat: EGCG effects on morphine neurotoxicity vol.39, pp.7, 2016, https://doi.org/10.1177/0960327120909540
  19. Bilobalide assuages morphine‐induced addiction in hippocampal neuron cells through upregulation of microRNA‐101 vol.34, pp.7, 2016, https://doi.org/10.1002/jbt.22493
  20. Neurochemical regulators of food behavior for pharmacological treatment of obesity: current status and future prospects vol.12, pp.20, 2016, https://doi.org/10.4155/fmc-2019-0361
  21. Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery vol.23, pp.8, 2020, https://doi.org/10.1093/ijnp/pyaa029
  22. Cannabidiol attenuated the maintenance and reinstatement of extinguished methylphenidate-induced conditioned place preference in rats vol.166, pp.None, 2016, https://doi.org/10.1016/j.brainresbull.2020.11.021
  23. Role of the central amygdala in acupuncture inhibition of methamphetamine‐induced behaviors in rats vol.26, pp.1, 2021, https://doi.org/10.1111/adb.12862
  24. The Microbiome-Gut-Brain Axis, a Potential Therapeutic Target for Substance-Related Disorders vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.738401
  25. α-Conotoxin TxIB Inhibits Development of Morphine-Induced Conditioned Place Preference in Mice via Blocking α6β2* Nicotinic Acetylcholine Receptors vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.772990
  26. Morphine coordinates SST and PV interneurons in the prelimbic cortex to disinhibit pyramidal neurons and enhance reward vol.26, pp.4, 2016, https://doi.org/10.1038/s41380-019-0480-7
  27. The Paradoxical Effect Hypothesis of Abused Drugs in a Rat Model of Chronic Morphine Administration vol.10, pp.15, 2016, https://doi.org/10.3390/jcm10153197
  28. The role of hippocampal glial glutamate transporter (GLT‐1) in morphine‐induced behavioral responses vol.11, pp.9, 2016, https://doi.org/10.1002/brb3.2323
  29. Effect of histone acetylation on maintenance and reinstatement of morphine-induced conditioned place preference and ΔFosB expression in the nucleus accumbens and prefrontal cortex of male rats vol.414, pp.None, 2016, https://doi.org/10.1016/j.bbr.2021.113477
  30. Melatonin attenuates morphine‐induced conditioned place preference in Wistar rats vol.11, pp.12, 2021, https://doi.org/10.1002/brb3.2397
  31. A General Picture of Cucurbit[8]uril Host-Guest Binding vol.61, pp.12, 2016, https://doi.org/10.1021/acs.jcim.1c01208