DOI QR코드

DOI QR Code

Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses

  • Kim, Hyun-Soo (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Fernandes, Gary (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Lee, Chang-Woo (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine)
  • 투고 : 2016.09.07
  • 심사 : 2016.09.19
  • 발행 : 2016.09.30

초록

Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.

키워드

참고문헌

  1. Archambault, V., Zhao, X., White-Cooper, H., Carpenter, A.T., and Glover, D.M. (2007). Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genet. 3, e200. https://doi.org/10.1371/journal.pgen.0030200
  2. Ammosova, T., Yedavalli, V.R., Niu, X., Jerebtsova, M., Van Eynde, A., Beullens, M., Bollen, M., Jeang, K.T., and Nekhai, S. (2011). Expression of a protein phosphatase 1 inhibitor, cdNIPP1, increases CDK9 threonine 186 phosphorylation and inhibits HIV-1 transcription. J. Biol. Chem. 286, 3798-3804. https://doi.org/10.1074/jbc.M110.196493
  3. Baldacchino, S., Saliba, C., Petroni, V., Fenech, A.G., Borg, N., and Grech, G. (2014). Deregulation of the phosphatase, PP2A is a common event in breast cancer, predicting sensitivity to FTY720. EPMA J. 5, 3. https://doi.org/10.1186/1878-5085-5-3
  4. Barr, F.A., Sillje, H.H., and Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol. 5, 429-440.
  5. Bollen, M., Peti, W., Ragusa, M.J., and Beullens, M. (2010). The extended PP1 toolkit: designed to create specificity. Trends Biochem. Sci. 35, 450-458. https://doi.org/10.1016/j.tibs.2010.03.002
  6. Bonnet, J., Coopman, P., and Morris, M.C. (2008). Characterization of centrosomal localization and dynamics of Cdc25C phosphatase in mitosis. Cell Cycle 7, 1991-1998. https://doi.org/10.4161/cc.7.13.6095
  7. Bouchoux, C., and Uhlmann, F. (2011). A quantitative model for ordered Cdk substrate dephosphorylation during mitotic exit. Cell 147, 803-814. https://doi.org/10.1016/j.cell.2011.09.047
  8. Boutros, R., Lobjois, V., and Ducommun, B. (2007). CDC25 phosphatases in cancer cells: key players? Good targets? Nat. Rev. Cancer 7, 495-507. https://doi.org/10.1038/nrc2169
  9. Boutros, R., Mondesert, O., Lorenzo, C., Astuti, P., McArthur, G., Chircop, M., Ducommun, B., and Gabrielli, B. (2013). CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci. PloS one 8, e67822. https://doi.org/10.1371/journal.pone.0067822
  10. Brautigan, D.L. (2013). Protein Ser/Thr phosphatases--the ugly ducklings of cell signalling. FEBS J. 280, 324-345. https://doi.org/10.1111/j.1742-4658.2012.08609.x
  11. Burgess, A., Vigneron, S., Brioudes, E., Labbe, J.C., Lorca, T., and Castro, A. (2010). Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin BCdc2/PP2A balance. Proc. Natl. Acad. Sci. USA 107, 12564-12569. https://doi.org/10.1073/pnas.0914191107
  12. Calabria, I., Baro, B., Rodriguez-Rodriguez, J.A., Russinol, N., and Queralt, E. (2012). Zds1 regulates PP2A(Cdc55) activity and Cdc14 activation during mitotic exit through its Zds_C motif. J. Cell Sci. 125, 2875-2884. https://doi.org/10.1242/jcs.097865
  13. Castilho, P.V., Williams, B.C., Mochida, S., Zhao, Y., and Goldberg, M.L. (2009). The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55delta, a phosphatase directed against CDK phosphosites. Mol. Biol. Cell 20, 4777-4789. https://doi.org/10.1091/mbc.E09-07-0643
  14. Cho, H.P., Liu, Y., Gomez, M., Dunlap, J., Tyers, M., and Wang, Y. (2005). The dual-specificity phosphatase CDC14B bundles and stabilizes microtubules. Mol. Cell Biol. 25, 4541-4551. https://doi.org/10.1128/MCB.25.11.4541-4551.2005
  15. Clift, D., Bizzari, F., and Marston, A.L. (2009). Shugoshin prevents cohesin cleavage by PP2A(Cdc55)-dependent inhibition of separase. Genes Dev. 23, 766-780. https://doi.org/10.1101/gad.507509
  16. Cougot, D., Allemand, E., Riviere, L., Benhenda, S., Duroure, K., Levillayer, F., Muchardt, C., Buendia, M.A., and Neuveut, C. (2012). Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci. Signal. 5, ra1.
  17. Cristobal, I., Rincon, R., Manso, R., Madoz-Gurpide, J., Carames, C., del Puerto-Nevado, L., Rojo, F., and Garcia-Foncillas, J. (2014). Hyperphosphorylation of PP2A in colorectal cancer and the potential therapeutic value showed by its forskolin-induced dephosphorylation and activation. Biochim. Biophys. Acta 1842, 1823-1829. https://doi.org/10.1016/j.bbadis.2014.06.032
  18. De Wulf, P., Montani, F., and Visintin, R. (2009). Protein phosphatases take the mitotic stage. Curr. Opin. Cell Biol. 21, 806-815. https://doi.org/10.1016/j.ceb.2009.08.003
  19. Deibler, R.W., and Kirschner, M.W. (2010). Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts. Mol. Cell 37, 753-767. https://doi.org/10.1016/j.molcel.2010.02.023
  20. Della Monica, R., Visconti, R., Cervone, N., Serpico, A.F., and Grieco, D. (2015). Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression. eLife 4.
  21. Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi, S.P. (2008). A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. USA. 105, 10762-10767. https://doi.org/10.1073/pnas.0805139105
  22. Dohadwala, M., da Cruz e Silva, E.F., Hall, F.L., Williams, R.T., Carbonaro-Hall, D.A., Nairn, A.C., Greengard, P., and Berndt, N. (1994). Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 91, 6408-6412. https://doi.org/10.1073/pnas.91.14.6408
  23. Eichhorn, P.J., Creyghton, M.P., and Bernards, R. (2009). Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta 1795, 1-15.
  24. Foley, E.A., Maldonado, M., and Kapoor, T.M. (2011). Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat. Cell Biol. 13, 1265-1271. https://doi.org/10.1038/ncb2327
  25. Gharbi-Ayachi, A., Labbe, J.C., Burgess, A., Vigneron, S., Strub, J.M., Brioudes, E., Van-Dorsselaer, A., Castro, A., and Lorca, T. (2010). The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science 330, 1673-1677. https://doi.org/10.1126/science.1197048
  26. Gil-Bernabe, A.M., Romero, F., Limon-Mortes, M.C., and Tortolero, M. (2006). Protein phosphatase 2A stabilizes human securin, whose phosphorylated forms are degraded via the SCF ubiquitin ligase. Mol. Cell. Biol. 26, 4017-4027. https://doi.org/10.1128/MCB.01904-05
  27. Grallert, A., Boke, E., Hagting, A., Hodgson, B., Connolly, Y., Griffiths, J.R., Smith, D.L., Pines, J., and Hagan, I.M. (2015). A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517, 94-98. https://doi.org/10.1038/nature14019
  28. Guo, F., Stanevich, V., Wlodarchak, N., Sengupta, R., Jiang, L., Satyshur, K.A., and Xing, Y. (2014). Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. Cell Res. 24, 190-203. https://doi.org/10.1038/cr.2013.138
  29. Helps, N.R., Brewis, N.D., Lineruth, K., Davis, T., Kaiser, K., and Cohen, P.T. (1998). Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J. Cell Sci. 111 ( Pt 10), 1331-1340.
  30. Hoffmann, I., Clarke, P.R., Marcote, M.J., Karsenti, E., and Draetta, G. (1993). Phosphorylation and activation of human cdc25-C by cdc2--cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 12, 53-63.
  31. Holland, A.J., Bottger, F., Stemmann, O., and Taylor, S.S. (2007). Protein phosphatase 2A and separase form a complex regulated by separase autocleavage. J. Biol. Chem. 282, 24623-24632. https://doi.org/10.1074/jbc.M702545200
  32. Hunter, T. (1995). Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236. https://doi.org/10.1016/0092-8674(95)90405-0
  33. Izawa, D., and Pines, J. (2015). The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517, 631-634. https://doi.org/10.1038/nature13911
  34. Izumi, T., and Maller, J.L. (1993). Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol. Biol. Cell 4, 1337-1350. https://doi.org/10.1091/mbc.4.12.1337
  35. Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417-439. https://doi.org/10.1042/bj3530417
  36. Johnson, S.A., and Hunter, T. (2005). Kinomics: methods for deciphering the kinome. Nat. Methods 2, 17-25. https://doi.org/10.1038/nmeth731
  37. Kelly, A.E., and Funabiki, H. (2009). Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr. Opin. Cell Biol. 21, 51-58. https://doi.org/10.1016/j.ceb.2009.01.004
  38. Kim, H.S., Baek, K.H., Ha, G.H., Lee, J.C., Kim, Y.N., Lee, J., Park, H.Y., Lee, N.R., Lee, H., Cho, Y., et al. (2010). The hsSsu72 phosphatase is a cohesin-binding protein that regulates the resolution of sister chromatid arm cohesion. EMBO J. 29, 3544-3557. https://doi.org/10.1038/emboj.2010.217
  39. Kim, H.S., Kim, S.H., Park, H.Y., Lee, J., Yoon, J.H., Choi, S., Ryu, S.H., Lee, H., Cho, H.S., and Lee, C.W. (2013). Functional interplay between Aurora B kinase and Ssu72 phosphatase regulates sister chromatid cohesion. Nat. Commun. 4, 2631. https://doi.org/10.1038/ncomms3631
  40. Kim, S.H., Jeon, Y., Kim, H.S., Lee, J.K., Lim, H.J., Kang, D., Cho, H., Park, C.K., Lee, H., and Lee, C.W. (2016). Hepatocyte homeostasis for chromosome ploidization and liver function is regulated by Ssu72 protein phosphatase. Hepatology 63, 247-259. https://doi.org/10.1002/hep.28281
  41. Kitajima, T.S., Sakuno, T., Ishiguro, K., Iemura, S., Natsume, T., Kawashima, S.A., and Watanabe, Y. (2006). Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46-52. https://doi.org/10.1038/nature04663
  42. Kotwaliwale, C., and Biggins, S. (2006). Microtubule capture: a concerted effort. Cell 127, 1105-1108. https://doi.org/10.1016/j.cell.2006.11.032
  43. Kumagai, A., and Dunphy, W.G. (1999). Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev. 13, 1067-1072. https://doi.org/10.1101/gad.13.9.1067
  44. Kumagai, A., Yakowec, P.S., and Dunphy, W.G. (1998). 14-3-3 proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol. Biol. Cell 9, 345-354. https://doi.org/10.1091/mbc.9.2.345
  45. Kruse, T., Zhang, G., Larsen, M.S., Lischetti, T., Streicher, W., Kragh Nielsen, T., Bjorn, S.P., and Nilsson, J. (2013). Direct binding between BubR1 and B56-PP2A phosphatase complexes regulate mitotic progression. J. Cell Sci. 1, 1086-1092.
  46. Larsen, M., Tremblay, M.L., and Yamada, K.M. (2003). Phosphatases in cell-matrix adhesion and migration. Nat. Rev. Mol. Cell Biol. 4, 700-711.
  47. Lindqvist, A., Rodriguez-Bravo, V., and Medema, R.H. (2009). The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol. 185, 193-202. https://doi.org/10.1083/jcb.200812045
  48. London, N., and Biggins, S. (2014). Signalling dynamics in the spindle checkpoint response. Nature reviews Mol. Cell Biol. 15, 736-747. https://doi.org/10.1038/nrm3888
  49. Lopez-Aviles, S., Kapuy, O., Novak, B., and Uhlmann, F. (2009). Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459, 592-595. https://doi.org/10.1038/nature07984
  50. Macek, B., Mann, M., and Olsen, J.V. (2009). Global and sitespecific quantitative phosphoproteomics: principles and applications. Ann. Rev. Pharmacol. Toxicol. 49, 199-221. https://doi.org/10.1146/annurev.pharmtox.011008.145606
  51. Mailand, N., Lukas, C., Kaiser, B.K., Jackson, P.K., Bartek, J., and Lukas, J. (2002). Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. Nat. Cell Biol. 4, 317-322.
  52. Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934. https://doi.org/10.1126/science.1075762
  53. McCloy, R.A., Parker, B.L., Rogers, S., Chaudhuri, R., Gayevskiy, V., Hoffman, N.J., Ali, N., Watkins, D.N., Daly, R.J., James, D.E., et al. (2015). Global phosphoproteomic mapping of early mitotic exit in human cells identifies novel substrate dephosphorylation motifs. Mol. Cell. Proteomics 14, 2194-2212. https://doi.org/10.1074/mcp.M114.046938
  54. Mehta, G.D., Rizvi, S.M., and Ghosh, S.K. (2012). Cohesin: a guardian of genome integrity. Biochim. Biophys. Acta 1823, 1324-1342. https://doi.org/10.1016/j.bbamcr.2012.05.027
  55. Meraldi, P., and Nigg, E.A. (2001). Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J. Cell Sci. 114, 3749-3757.
  56. Mocciaro, A., and Schiebel, E. (2010). Cdc14: a highly conserved family of phosphatases with non-conserved functions? J. Cell Sci. 123, 2867-2876. https://doi.org/10.1242/jcs.074815
  57. Mochida, S., Ikeo, S., Gannon, J., and Hunt, T. (2009). Regulated activity of PP2A-B55 delta is crucial for controlling entry into and exit from mitosis in Xenopus egg extracts. EMBO J. 28, 2777-2785. https://doi.org/10.1038/emboj.2009.238
  58. Mochida, S., Maslen, S.L., Skehel, M., and Hunt, T. (2010). Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science 330, 1670-1673. https://doi.org/10.1126/science.1195689
  59. Mueller, P.R., Coleman, T.R., and Dunphy, W.G. (1995). Cell cycle regulation of a Xenopus Wee1-like kinase. Mol. Biol. Cell 6, 119-134. https://doi.org/10.1091/mbc.6.1.119
  60. Musacchio, A., and Salmon, E.D. (2007). The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379-393.
  61. Nagao, K., and Yanagida, M. (2002). Regulating sister chromatid separation by separase phosphorylation. Dev. Cell 2, 2-4. https://doi.org/10.1016/S1534-5807(01)00112-5
  62. Nilsson, I., and Hoffmann, I. (2000). Cell cycle regulation by the Cdc25 phosphatase family. Prog. Cell Cycle Res. 4, 107-114.
  63. O'Farrell, P.H. (2001). Triggering the all-or-nothing switch into mitosis. Trends Cell Biol. 11, 512-519. https://doi.org/10.1016/S0962-8924(01)02142-0
  64. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648. https://doi.org/10.1016/j.cell.2006.09.026
  65. Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3.
  66. Perdiguero, E., and Nebreda, A.R. (2004). Regulation of Cdc25C activity during the meiotic G2/M transition. Cell cycle 3, 733-737.
  67. Peters, J.M., Tedeschi, A., and Schmitz, J. (2008). The cohesin complex and its roles in chromosome biology. Genes Dev. 22, 3089-3114. https://doi.org/10.1101/gad.1724308
  68. Pomerening, J.R., Sontag, E.D., and Ferrell, J.E., Jr. (2003). Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346-351. https://doi.org/10.1038/ncb954
  69. Potapova, T.A., Daum, J.R., Pittman, B.D., Hudson, J.R., Jones, T.N., Satinover, D.L., Stukenberg, P.T., and Gorbsky, G.J. (2006). The reversibility of mitotic exit in vertebrate cells. Nature 440, 954-958. https://doi.org/10.1038/nature04652
  70. Queralt, E., and Uhlmann, F. (2008). Cdk-counteracting phosphatases unlock mitotic exit. Curr. Opin. Cell Biol. 20, 661-668. https://doi.org/10.1016/j.ceb.2008.09.003
  71. Rogers, S., Fey, D., McCloy, R.A., Parker, B.L., Mitchell, N.J., Payne, R.J., Daly, R.J., James, D.E., Caldon, C.E., Watkins, D.N., et al. (2016). PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells. J. Cell Sci. 129, 1340-1354. https://doi.org/10.1242/jcs.179754
  72. Ruchaud, S., Carmena, M., and Earnshaw, W.C. (2007). Chromosomal passengers: conducting cell division. Nat. Rev. Mol. Cell Biol. 8, 798-812. https://doi.org/10.1038/nrm2257
  73. Sassoon, I., Severin, F.F., Andrews, P.D., Taba, M.R., Kaplan, K.B., Ashford, A.J., Stark, M.J., Sorger, P.K., and Hyman, A.A. (1999). Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Dev. 13, 545-555. https://doi.org/10.1101/gad.13.5.545
  74. Schlaitz, A.L., Srayko, M., Dammermann, A., Quintin, S., Wielsch, N., MacLeod, I., de Robillard, Q., Zinke, A., Yates, J.R., 3rd, Muller-Reichert, T., et al. (2007). The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 128, 115-127. https://doi.org/10.1016/j.cell.2006.10.050
  75. Schmitz, M.H., Held, M., Janssens, V., Hutchins, J.R., Hudecz, O., Ivanova, E., Goris, J., Trinkle-Mulcahy, L., Lamond, A.I., Poser, I., et al. (2010). Live-cell imaging RNAi screen identifies PP2AB55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat. Cell Biol. 12, 886-893. https://doi.org/10.1038/ncb2092
  76. Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Letters 335, 9-18. https://doi.org/10.1016/j.canlet.2013.02.036
  77. Shi, Y. (2009). Serine/threonine phosphatases: mechanism through structure. Cell 139, 468-484. https://doi.org/10.1016/j.cell.2009.10.006
  78. Sivakumar, S., Janczyk, P.L., Qu, Q., Brautigam, C.A., Stukenberg, P.T., Yu, H., and Gorbsky, G.J. (2016). The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores. eLife 5.
  79. Stebbing, J., Lit, L.C., Zhang, H., Darrington, R.S., Melaiu, O., Rudraraju, B., and Giamas, G. (2014). The regulatory roles of phosphatases in cancer. Oncogene 33, 939-953. https://doi.org/10.1038/onc.2013.80
  80. Suijkerbuijk, S. J. E., Vleugel, M., Teixeira, A., and Kops, G. J. P. L.(2012). Integration of kinase and phosphatase activities by BUBR1 ensures formation of stable kinetochore-microtubule attachments. Dev. Cell 23, 745-755. https://doi.org/10.1016/j.devcel.2012.09.005
  81. Sullivan, M., and Morgan, D.O. (2007). Finishing mitosis, one step at a time. Nat. Rev. Mol. Cell Biol. 8, 894-903. https://doi.org/10.1038/nrm2276
  82. Sumiyoshi, E., Sugimoto, A., and Yamamoto, M. (2002). Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J. Cell Sci. 115, 1403-1410.
  83. Takakura, S., Kohno, T., Manda, R., Okamoto, A., Tanaka, T., and Yokota, J. (2001). Genetic alterations and expression of the protein phosphatase 1 genes in human cancers. Internat. J. Oncology 18, 817-824.
  84. Tan, S., Lyulcheva, E., Dean, J., and Bennett, D. (2008). Mars promotes dTACC dephosphorylation on mitotic spindles to ensure spindle stability. J. Cell Biol. 182, 27-33. https://doi.org/10.1083/jcb.200712080
  85. Tan-Wong, S.M., Zaugg, J.B., Camblong, J., Xu, Z., Zhang, D.W., Mischo, H.E., Ansari, A.Z., Luscombe, N.M., Steinmetz, L.M., and Proudfoot, N.J. (2012). Gene loops enhance transcriptional directionality. Science 338, 671-675. https://doi.org/10.1126/science.1224350
  86. Tang, Z., Shu, H., Qi, W., Mahmood, N.A., Mumby, M.C., and Yu, H. (2006). PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575-585. https://doi.org/10.1016/j.devcel.2006.03.010
  87. Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833-846.
  88. Trinkle-Mulcahy, L., and Lamond, A.I. (2006). Mitotic phosphatases:no longer silent partners. Curr. Opin. Cell Biol. 18, 623-631. https://doi.org/10.1016/j.ceb.2006.09.001
  89. Vigneron, S., Brioudes, E., Burgess, A., Labbe, J.C., Lorca, T., and Castro, A. (2009). Greatwall maintains mitosis through regulation of PP2A. EMBO J. 28, 2786-2793. https://doi.org/10.1038/emboj.2009.228
  90. Virshup, D.M., and Shenolikar, S. (2009). From promiscuity to precision: protein phosphatases get a makeover. Mol. Cell 33, 537-545. https://doi.org/10.1016/j.molcel.2009.02.015
  91. Visintin, R., Hwang, E.S., and Amon, A. (1999). Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818-823. https://doi.org/10.1038/19775
  92. Voets, E., and Wolthuis, R.M. (2010). MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle 9, 3591-3601. https://doi.org/10.4161/cc.9.17.12832
  93. Waizenegger, I.C., Hauf, S., Meinke, A., and Peters, J.M. (2000). Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399-410. https://doi.org/10.1016/S0092-8674(00)00132-X
  94. Werner-Allen, J.W., Lee, C.J., Liu, P., Nicely, N.I., Wang, S., Greenleaf, A.L., and Zhou, P. (2011). cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem. 286, 5717-5726. https://doi.org/10.1074/jbc.M110.197129
  95. Winkler, C., De Munter, S., Van Dessel, N., Lesage, B., Heroes, E., Boens, S., Beullens, M., Van Eynde, A., and Bollen, M. (2015). The selective inhibition of protein phosphatase-1 results in mitotic catastrophe and impaired tumor growth. J. Cell Sci. 128, 4526-4537. https://doi.org/10.1242/jcs.175588
  96. Wu, J.Q., Guo, J.Y., Tang, W., Yang, C.S., Freel, C.D., Chen, C., Nairn, A.C., and Kornbluth, S. (2009). PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat. Cell Biol. 11, 644-651. https://doi.org/10.1038/ncb1871
  97. Xiang, K., Nagaike, T., Xiang, S., Kilic, T., Beh, M.M., Manley, J.L., and Tong, L. (2010). Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 467, 729-733. https://doi.org/10.1038/nature09391
  98. Xing, H., Vanderford, N.L., and Sarge, K.D. (2008). The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nat. Cell Biol. 10, 1318-1323. https://doi.org/10.1038/ncb1790
  99. Yang, Q., and Ferrell, J.E., Jr. (2013). The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat. Cell Biol. 15, 519-525. https://doi.org/10.1038/ncb2737
  100. Yellman, C.M., and Burke, D.J. (2006). The role of Cdc55 in the spindle checkpoint is through regulation of mitotic exit in Saccharomyces cerevisiae. Mol. Biol. Cell 17, 658-666. https://doi.org/10.1091/mbc.e05-04-0336
  101. Yu, J., Fleming, S.L., Williams, B., Williams, E.V., Li, Z., Somma, P., Rieder, C.L., and Goldberg, M.L. (2004). Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J. Cell Biol. 164, 487-492. https://doi.org/10.1083/jcb.200310059
  102. Zeng, K., Bastos, R.N., Barr, F.A., and Gruneberg, U. (2010). Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J. Cell Biol. 191, 1315-1332. https://doi.org/10.1083/jcb.201008106

피인용 문헌

  1. Combining Genomics To Identify the Pathways of Post-Transcriptional Nongenotoxic Signaling and Energy Homeostasis in Livers of Rats Treated with the Pregnane X Receptor Agonist, Pregnenolone Carbonitrile 2017, https://doi.org/10.1021/acs.jproteome.7b00364
  2. phosphatase PP2A interacts with the centrosomal protein CEP161, a CDK5RAP2 ortholog vol.23, pp.10, 2018, https://doi.org/10.1111/gtc.12637
  3. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates vol.87, pp.1, 2018, https://doi.org/10.1146/annurev-biochem-062917-012332
  4. A PP2A-B56—Centered View on Metaphase-to-Anaphase Transition in Mouse Oocyte Meiosis I vol.9, pp.2, 2016, https://doi.org/10.3390/cells9020390
  5. LEM2 phase separation governs ESCRT-mediated nuclear envelope reformation vol.582, pp.7810, 2016, https://doi.org/10.1038/s41586-020-2232-x
  6. MnTE-2-PyP Suppresses Prostate Cancer Cell Growth via H 2 O 2 Production vol.9, pp.6, 2016, https://doi.org/10.3390/antiox9060490
  7. Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae vol.10, pp.None, 2016, https://doi.org/10.7554/elife.72833
  8. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases vol.22, pp.7, 2021, https://doi.org/10.3390/ijms22073791
  9. Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics vol.23, pp.34, 2021, https://doi.org/10.1039/d1cp02783b