DOI QR코드

DOI QR Code

Study of the Dependency of the Specific Power Absorption Rate on Several Characteristics of the Excitation Magnetic Signal when Irradiating a SPION-containing Ferrofluid

  • Rosales, Alejandra Mina (Centre for Biomedical Technology (CTB), Universidad Politecnica de Madrid (UPM)) ;
  • Aznar, Elena (Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM). Unidad Mixta Universitat Politecnica de Valencia - Universitat de Valencia) ;
  • Coll, Carmen (Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM). Unidad Mixta Universitat Politecnica de Valencia - Universitat de Valencia) ;
  • Mendoza, Ruben A. Garcia (Centre for Biomedical Technology (CTB), Universidad Politecnica de Madrid (UPM)) ;
  • Bojorge, A. Lorena Urbano (Centre for Biomedical Technology (CTB), Universidad Politecnica de Madrid (UPM)) ;
  • Gonzalez, Nazario Felix (Centre for Biomedical Technology (CTB), Universidad Politecnica de Madrid (UPM)) ;
  • Martinez-Manez, Ramon (Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM). Unidad Mixta Universitat Politecnica de Valencia - Universitat de Valencia) ;
  • del Pozo Guerrero, Francisco (Centre for Biomedical Technology (CTB), Universidad Politecnica de Madrid (UPM)) ;
  • Olmedo, Jose Javier Serrano (Centre for Biomedical Technology (CTB), Universidad Politecnica de Madrid (UPM))
  • Received : 2015.11.23
  • Accepted : 2016.08.25
  • Published : 2016.09.30

Abstract

Magnetic hyperthermia mediated by superparamagnetic particles is mainly based in sinusoidal waveforms as excitation signals. Temperature changes are conventionally explained by rotation of the particles in the surrounding medium. This is a hypothesis quite questionable since habitual experimental setups only produce changes in the magnetic module, not in the field lines trajectories. Theoretical results were tested by changing the waveform of the exciting signal in order to compare non-sinusoidal signals against sinusoidal signals. Experiments were done at different frequencies: 200 KHz, 400 KHz, 600 KHz, 800 KHz and 1 MHz. Superparamagnetic Iron Oxide samples (SPION), made of magnetite ($Fe_3O_4$) and suspended in water (100 mg/ml), were used. Magnetic field strength varies from $0.1{\pm}0.015KA/m$ to $0.6{\pm}0.015KA/m$. In this study was observed that the power loss depends on the applied frequency: for 1 to 2.5 RMS current the responses for each signal are part of the higher section of the exponential function, and for 3.5 to 8 RMS current the response is clearly the decrement exponential function's tale (under $1{\times}10^3LER/gr$).

Keywords

References

  1. Z. Wu, Z. Zhuo, D. Cai, J. A. Wu, J. Wang, and J. Tang, Tech. and Health Care 23, 203 (2015). https://doi.org/10.3233/THC-150955
  2. C. A. Quinto, P. Mohindra, S. Tong, and G. Bao, Nanoscale 7, 12728 (2015). https://doi.org/10.1039/C5NR02718G
  3. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, J. Mater. Chem. 14, 2161 (2004). https://doi.org/10.1039/b402025a
  4. R. Hergt, W. Andra, C. G. d'Ambly, I. Hilger, and W. A. Kaiser, U. IEEE Trans. Magn. 34, 3745 (1998). https://doi.org/10.1109/20.718537
  5. P. Pradhan, J. Giri, G. Samanta, H. D. Sarma, K. P. Mishra, J. Bellare, R. Banerjee, and D. Bahadur, J. Biomed. Mater. Res. 81B, 12 (2007). https://doi.org/10.1002/jbm.b.30630
  6. A. Jordan, R. Scholz, P. Wust, H. Fahling, and R. Felix, J. Magn. Magn. Mater. 201, 413 (1999). https://doi.org/10.1016/S0304-8853(99)00088-8
  7. Q. A. Pankhurst, J. Conolly, S. K. Jones, and J. Dobson, J. Phys. Appl. Phys. 36, R167 (2003). https://doi.org/10.1088/0022-3727/36/13/201
  8. X. Wang, H. Gu, and Z. Yang, J. Magn. Magn. Mater. 293, 334 (2005). https://doi.org/10.1016/j.jmmm.2005.02.028
  9. S. Bedanta and W. Kleemann, J. Physics, 42 (2009).
  10. V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, and J. C. Bischof, Nanotechnology 16, 1221 (2005). https://doi.org/10.1088/0957-4484/16/8/041
  11. K. Hu, J. Sun, Z. Guo, P. Wang, Q. Chen, M. Ma, N. Gu, Advan. Mater. 27, 2507 (2015). https://doi.org/10.1002/adma.201405757
  12. H. Mamiya, J. Nanomaterials 2013, (2013).
  13. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002). https://doi.org/10.1016/S0304-8853(02)00706-0
  14. I. M. Obaidat, B. Issa, and Y. Haik, Nanomaterials 5, 63 (2015). https://doi.org/10.3390/nano5010063
  15. S. Giri, B. G. Trewyn, M. Stellmaker, and V. Lin, Angew. Chem. Int. Ed. 44, 5038 (2005). https://doi.org/10.1002/anie.200501819
  16. F. Shubitidze, K. Kekalo, R. Stigliano, and I. Baker, J. Appl. Phys. 117, 094302 (2015). https://doi.org/10.1063/1.4907915