DOI QR코드

DOI QR Code

Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology

  • Kim, Guk Bae (Biomedical Engineering Research Center, Asan Institute of Life Science, Asan Medical Center) ;
  • Lee, Sangwook (Biomedical Engineering Research Center, Asan Institute of Life Science, Asan Medical Center) ;
  • Kim, Haekang (Biomedical Engineering Research Center, Asan Institute of Life Science, Asan Medical Center) ;
  • Yang, Dong Hyun (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Young-Hak (Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kyung, Yoon Soo (Department of Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Choung-Soo (Department of Urology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Choi, Se Hoon (Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Bum Joon (Department of Neurology, Asan Medical Center, University of Ulsan College of Medicinec) ;
  • Ha, Hojin (POSTECH Biotech Center, Pohang University of Science and Technology) ;
  • Kwon, Sun U. (Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Namkug (Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2015.10.15
  • 심사 : 2015.11.28
  • 발행 : 2016.04.01

초록

The advent of three-dimensional printing (3DP) technology has enabled the creation of a tangible and complex 3D object that goes beyond a simple 3D-shaded visualization on a flat monitor. Since the early 2000s, 3DP machines have been used only in hard tissue applications. Recently developed multi-materials for 3DP have been used extensively for a variety of medical applications, such as personalized surgical planning and guidance, customized implants, biomedical research, and preclinical education. In this review article, we discuss the 3D reconstruction process, touching on medical imaging, and various 3DP systems applicable to medicine. In addition, the 3DP medical applications using multi-materials are introduced, as well as our recent results.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. Kido T, Kurata A, Higashino H, Sugawara Y, Okayama H, Higaki J, et al. Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med 2007;25:38-44 https://doi.org/10.1007/s11604-006-0097-z
  2. Meaney JF, Goyen M. Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol 2007;17 Suppl 2:B2-B6
  3. Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 2006;51:R5-R27 https://doi.org/10.1088/0031-9155/51/13/R02
  4. Kirchgeorg MA, Prokop M. Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 1998;28:39-54 https://doi.org/10.1016/S0720-048X(98)00011-4
  5. McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 1997;79:169-174
  6. Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mechanical Engineering 2012 Jun 17 [Epub]. http://dx.doi.org/10.5402/2012/208760
  7. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, et al. 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 2010;5:335-341 https://doi.org/10.1007/s11548-010-0476-x
  8. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 2014;86:3240-3253 https://doi.org/10.1021/ac403397r
  9. Michalski MH, Ross JS. The shape of things to come: 3D printing in medicine. JAMA 2014;312:2213-2214 https://doi.org/10.1001/jama.2014.9542
  10. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014;32:773-785 https://doi.org/10.1038/nbt.2958
  11. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graphics 1987;21:163-169 https://doi.org/10.1145/37402.37422
  12. Tiede U, Hoehne KH, Bomans M, Pommert A, Riemer M, Wiebecke G. Investigation of medical 3D-rendering algorithms. Comput Graphics Appl 1990;10:41-53
  13. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006;31:1116-1128 https://doi.org/10.1016/j.neuroimage.2006.01.015
  14. Shattuck DW, Leahy RM. BrainSuite: an automated cortical surface identification tool. Med Image Anal 2002;6:129-142 https://doi.org/10.1016/S1361-8415(02)00054-3
  15. Schroeder WJ, Zarge JA, Lorensen WE. Decimation of triangle meshes. SIGGRAPH Comput Graphics 1992;26:65-70 https://doi.org/10.1145/142920.134010
  16. Field DA. Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 1988;4:709-712 https://doi.org/10.1002/cnm.1630040603
  17. Hinton E, Campbell JS. Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Method Eng 1974;8:461-480 https://doi.org/10.1002/nme.1620080303
  18. Raphael O, Herve R. Clinical applications of rapid prototyping models in cranio-maxillofacial surgery. In: Hoque M, ed. Advanced Applications of rapid prototyping technology in modern engineering. Rijeka, Croatia: InTech, 2011
  19. Mankovich NJ, Samson D, Pratt W, Lew D, Beumer J 3rd. Surgical planning using three-dimensional imaging and computer modeling. Otolaryngol Clin North Am 1994;27:875-889
  20. Choi JY, Choi JH, Kim NK, Kim Y, Lee JK, Kim MK, et al. Analysis of errors in medical rapid prototyping models. Int J Oral Maxillofac Surg 2002;31:23-32 https://doi.org/10.1054/ijom.2000.0135
  21. Chang PS, Parker TH, Patrick CW Jr, Miller MJ. The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg 2003;14:164-170 https://doi.org/10.1097/00001665-200303000-00006
  22. Schicho K, Figl M, Seemann R, Ewers R, Lambrecht JT, Wagner A, et al. Accuracy of treatment planning based on stereolithography in computer assisted surgery. Med Phys 2006;33:3408-3417 https://doi.org/10.1118/1.2242014
  23. Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg 2009;37:167-173 https://doi.org/10.1016/j.jcms.2008.10.008
  24. Silva DN, Gerhardt de Oliveira M, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Barbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg 2008;36:443-449 https://doi.org/10.1016/j.jcms.2008.04.003
  25. Shellabear M, Nyrhila O. DMLS-Development history and state of the art. Proceedings of the 4th LANE; 2004 Sep 21-24; Erlangen, Germany. Bamberg: Meisenbach-Verlag, 2004
  26. Khaing MW, Fuh JY, Lu L. Direct metal laser sintering for rapid tooling: processing and characterization of EOS parts. J Mat Proc Tech 2001;113:269-272 https://doi.org/10.1016/S0924-0136(01)00584-2
  27. Ohtani T, Kusumoto N, Wakabayashi K, Yamada S, Nakamura T, Kumazawa Y, et al. Application of haptic device to implant dentistry--accuracy verification of drilling into a pig bone. Dent Mater J 2009;28:75-81 https://doi.org/10.4012/dmj.28.75
  28. Muller A, Krishnan KG, Uhl E, Mast G. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 2003;14:899-914 https://doi.org/10.1097/00001665-200311000-00014
  29. Poukens J, Haex J, Riediger D. The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg 2003;8:146-154 https://doi.org/10.3109/10929080309146049
  30. Wagner JD, Baack B, Brown GA, Kelly J. Rapid 3-dimensional prototyping for surgical repair of maxillofacial fractures: a technical note. J Oral Maxillofac Surg 2004;62:898-901 https://doi.org/10.1016/j.joms.2003.10.011
  31. Faber J, Berto PM, Quaresma M. Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop 2006;129:583-589 https://doi.org/10.1016/j.ajodo.2005.12.015
  32. Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg 2007;18:740-747 https://doi.org/10.1097/scs.0b013e318069014f
  33. D'Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ, et al. Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 2000;53:200-204 https://doi.org/10.1054/bjps.1999.3268
  34. Paiva WS, Amorim R, Bezerra DA, Masini M. Aplication of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr 2007;65:443-445 https://doi.org/10.1590/S0004-282X2007000300015
  35. Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H 2007;221:407-416 https://doi.org/10.1243/09544119JEIM83
  36. Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 2008;117:2388-2394 https://doi.org/10.1161/CIRCULATIONAHA.107.740977
  37. Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 2004;100:139-145 https://doi.org/10.3171/jns.2004.100.1.0139
  38. Giesel FL, Hart AR, Hahn HK, Wignall E, Rengier F, Talanow R, et al. 3D reconstructions of the cerebral ventricles and volume quantification in children with brain malformations. Acad Radiol 2009;16:610-617 https://doi.org/10.1016/j.acra.2008.11.010
  39. Guarino J, Tennyson S, McCain G, Bond L, Shea K, King H. Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop 2007;27:955-960 https://doi.org/10.1097/bpo.0b013e3181594ced
  40. Hurson C, Tansey A, O'Donnchadha B, Nicholson P, Rice J, McElwain J. Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 2007;38:1158-1162 https://doi.org/10.1016/j.injury.2007.05.020
  41. Hiramatsu H, Yamaguchi H, Nimi S, Ono H. [Rapid prototyping of the larynx for laryngeal frame work surgery]. Nihon Jibiinkoka Gakkai Kaiho 2004;107:949-955 https://doi.org/10.3950/jibiinkoka.107.949
  42. Mahmood F, Owais K, Taylor C, Montealegre-Gallegos M, Manning W, Matyal R, et al. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging 2015;8:227-229 https://doi.org/10.1016/j.jcmg.2014.06.020
  43. Yang DH, Kang JW, Kim N, Song JK, Lee JW, Lim TH. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation 2015;132:300-301 https://doi.org/10.1161/CIRCULATIONAHA.115.015842
  44. He J, Li D, Lu B, Wang Z, Tao Z. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng H 2006;220:823-830
  45. Wang Z, Teng Y, Li D. [Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2004;18:347-351
  46. Lee MY, Chang CC, Ku YC. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration. J Med Eng Technol 2008;32:83-90 https://doi.org/10.1080/03091900600836642
  47. Dai KR, Yan MN, Zhu ZA, Sun YH. Computer-aided custommade hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplasty 2007;22:981-986 https://doi.org/10.1016/j.arth.2007.05.002
  48. Harrysson OL, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoralcomponent case study. BMC Musculoskelet Disord 2007;8:91 https://doi.org/10.1186/1471-2474-8-91
  49. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 2008;85:573-582
  50. Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008;40:268-280 https://doi.org/10.1080/07853890701881788
  51. Amerini A, Hatam N, Malasa M, Pott D, Tewarie L, Isfort P, et al. A personalized approach to interventional treatment of tricuspid regurgitation: experiences from an acute animal study. Interact Cardiovasc Thorac Surg 2014;19:414-418 https://doi.org/10.1093/icvts/ivu143
  52. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science 2002;295:1009-1014 https://doi.org/10.1126/science.1069210
  53. Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci 2012;37:1079-1104 https://doi.org/10.1016/j.progpolymsci.2011.11.007
  54. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010;328:1662-1668 https://doi.org/10.1126/science.1188302
  55. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011;21:745-754 https://doi.org/10.1016/j.tcb.2011.09.005
  56. Chung SK, Son YR, Shin SJ, Kim SK. Nasal airflow during respiratory cycle. Am J Rhinol 2006;20:379-384 https://doi.org/10.2500/ajr.2006.20.2890
  57. Tek P, Chiganos TC, Mohammed JS, Eddington DT, Fall CP, Ifft P, et al. Rapid prototyping for neuroscience and neural engineering. J Neurosci Methods 2008;172:263-269 https://doi.org/10.1016/j.jneumeth.2008.03.011
  58. Canstein C, Cachot P, Faust A, Stalder AF, Bock J, Frydrychowicz A, et al. 3D MR flow analysis in realistic rapidprototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med 2008;59:535-546 https://doi.org/10.1002/mrm.21331
  59. Dhir V, Itoi T, Fockens P, Perez-Miranda M, Khashab MA, Seo DW, et al. Novel ex vivo model for hands-on teaching of and training in EUS-guided biliary drainage: creation of “Mumbai EUS” stereolithography/3D printing bile duct prototype (with videos). Gastrointest Endosc 2015;81:440-446 https://doi.org/10.1016/j.gie.2014.09.011
  60. de Zelicourt D, Pekkan K, Kitajima H, Frakes D, Yoganathan AP. Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng 2005;127:204-207 https://doi.org/10.1115/1.1835367
  61. Giesel FL, Mehndiratta A, von Tengg-Kobligk H, Schaeffer A, Teh K, Hoffman EA, et al. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics. Acad Radiol 2009;16:495-498 https://doi.org/10.1016/j.acra.2008.10.008
  62. Sulaiman A, Boussel L, Taconnet F, Serfaty JM, Alsaid H, Attia C, et al. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur J Cardiothorac Surg 2008;33:53-57 https://doi.org/10.1016/j.ejcts.2007.10.016
  63. Birjiniuk J, Ruddy JM, Iffrig E, Henry TS, Leshnower BG, Oshinski JN, et al. Development and testing of a silicone in vitro model of descending aortic dissection. J Surg Res 2015;198:502-507 https://doi.org/10.1016/j.jss.2015.03.024
  64. Veeraswamy RK, Birjiniuk J, Ruddy JM, Timmins L, Oshinski JN, Ku DN. PC42. Phase-contrast magnetic resonance imaging reveals novel fluid dynamics in a patient-derived silicone model of descending thoracic aortic dissection. J Vasc Surg 2015;61:128S-129S
  65. Kim BJ, Kwon SU. Perforator infarction immediately distal to the stenosis of parental artery: is it hemodynamic? J Stroke Cerebrovasc Dis 2014;23:1991-1993 https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.01.024
  66. Suzuki M, Ogawa Y, Kawano A, Hagiwara A, Yamaguchi H, Ono H. Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 2004;124:400-402 https://doi.org/10.1080/00016480410016478
  67. Bruyere F, Leroux C, Brunereau L, Lermusiaux P. Rapid prototyping model for percutaneous nephrolithotomy training. J Endourol 2008;22:91-96 https://doi.org/10.1089/end.2007.0025
  68. Kalejs M, von Segesser LK. Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact Cardiovasc Thorac Surg 2009;8:182-186 https://doi.org/10.1510/icvts.2008.194134
  69. Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg 2014;120:489-492 https://doi.org/10.3171/2013.11.JNS131066
  70. Narayanan V, Narayanan P, Rajagopalan R, Karuppiah R, Rahman ZA, Wormald PJ, et al. Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 2015;272:753-757 https://doi.org/10.1007/s00405-014-3300-3

피인용 문헌

  1. Advances in three-dimensional bioprinting for hard tissue engineering vol.13, pp.6, 2016, https://doi.org/10.1007/s13770-016-0145-4
  2. 3D-printed patient-specific applications in orthopedics vol.8, pp.None, 2016, https://doi.org/10.2147/orr.s99614
  3. Applications of 3D printing in cardiovascular diseases vol.13, pp.12, 2016, https://doi.org/10.1038/nrcardio.2016.170
  4. Influence of Contrast Agent Dilution on Ballon Deflation Time and Visibility During Tracheal Balloon Dilation: A 3D Printed Phantom Study vol.40, pp.2, 2016, https://doi.org/10.1007/s00270-016-1497-9
  5. Structural and congenital heart disease interventions: the role of three-dimensional printing vol.25, pp.2, 2017, https://doi.org/10.1007/s12471-016-0942-3
  6. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger vol.9, pp.1, 2017, https://doi.org/10.1088/1758-5090/9/1/015010
  7. Current and emerging applications of 3D printing in medicine vol.9, pp.2, 2017, https://doi.org/10.1088/1758-5090/aa7279
  8. Small-angle x-ray scattering cross-section measurements of imaging materials vol.3, pp.2, 2017, https://doi.org/10.1088/2057-1976/aa6720
  9. 3D-printed phantom study for investigating stent abutment during gastroduodenal stent placement for gastric outlet obstruction vol.3, pp.1, 2016, https://doi.org/10.1186/s41205-017-0017-0
  10. A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases vol.17, pp.6, 2017, https://doi.org/10.14744/anatoljcardiol.2017.7464
  11. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes vol.12, pp.8, 2016, https://doi.org/10.1371/journal.pone.0183168
  12. Additive technologies in neurosurgery vol.82, pp.6, 2016, https://doi.org/10.17116/neiro20188206197
  13. Clinical Applications of Three-Dimensional Printing in Cardiovascular Disease vol.2, pp.4, 2018, https://doi.org/10.22468/cvia.2018.00094
  14. Applications of Three-Dimensional Printing in Cardiovascular Surgery: A Case-Based Review vol.2, pp.4, 2018, https://doi.org/10.22468/cvia.2018.00199
  15. Age of Data in Contemporary Research Articles Published in Representative General Radiology Journals vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1172
  16. Computer-Assisted Planning and 3D Printing-Assisted Modeling for Chin Augmentation vol.38, pp.1, 2016, https://doi.org/10.1093/asj/sjx071
  17. A review of existing and potential computer user interfaces for modern radiology vol.9, pp.4, 2018, https://doi.org/10.1007/s13244-018-0620-7
  18. SURGICAL OUTCOMES OF 3D PRINTED MUSCULOSKELETAL METAL IMPLANTS: A SYSTEMATIC REVIEW vol.21, pp.3, 2016, https://doi.org/10.1142/s0218957718400018
  19. What we have achieved in the design of 3D printed metal implants for application in orthopedics? Personal experience and review vol.24, pp.8, 2016, https://doi.org/10.1108/rpj-10-2017-0205
  20. Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology vol.10, pp.12, 2018, https://doi.org/10.3390/polym10121304
  21. Three Dimensional Printing Technique and Its Application to Bone Tumor Surgery vol.53, pp.6, 2016, https://doi.org/10.4055/jkoa.2018.53.6.466
  22. Application of Three-Dimensional Printing Technology for Improved Orbital-Maxillary-Zygomatic Reconstruction : vol.30, pp.2, 2019, https://doi.org/10.1097/scs.0000000000005031
  23. The Application and Operation-Effect Analysis for Complex Tibial Plateau Fractures with 3D Printing Technique vol.10, pp.3, 2016, https://doi.org/10.4236/ijcm.2019.103010
  24. A Systematic Review on 3D-Printed Imaging and Dosimetry Phantoms in Radiation Therapy vol.18, pp.None, 2019, https://doi.org/10.1177/1533033819870208
  25. 3D Printed Temporary Veneer Restoring Autotransplanted Teeth in Children: Design and Concept Validation Ex Vivo vol.16, pp.3, 2016, https://doi.org/10.3390/ijerph16030496
  26. A Review of Three-Dimensional Printing Technology for Medical Applications vol.80, pp.2, 2016, https://doi.org/10.3348/jksr.2019.80.2.213
  27. DICOM 영상과 설계 모델링을 융합한 외이도의 형태적 변화 관찰 연구 vol.10, pp.11, 2016, https://doi.org/10.15207/jkcs.2019.10.11.173
  28. 3D printed PLA Army-Navy retractors when used as linear retractors yield clinically acceptable tolerances vol.5, pp.1, 2016, https://doi.org/10.1186/s41205-019-0053-z
  29. Development of a CT imaging phantom of anthromorphic lung using fused deposition modeling 3D printing vol.99, pp.1, 2016, https://doi.org/10.1097/md.0000000000018617
  30. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing vol.21, pp.2, 2016, https://doi.org/10.3348/kjr.2019.0625
  31. Current applications of three‐dimensional printing in urology vol.125, pp.1, 2020, https://doi.org/10.1111/bju.14928
  32. Usefulness of a 3D-Printed Thyroid Cancer Phantom for Clinician to Patient Communication vol.44, pp.3, 2016, https://doi.org/10.1007/s00268-019-05260-z
  33. Application of Three-Dimensional Printed Models in Congenital Heart Surgery: Surgeon's Perspective vol.81, pp.2, 2016, https://doi.org/10.3348/jksr.2020.81.2.310
  34. A review on computer-aided design and manufacturing of patient-specific maxillofacial implants vol.17, pp.4, 2016, https://doi.org/10.1080/17434440.2020.1736040
  35. What would you like to print ? Students' opinions on the use of 3D printing technology in medicine vol.15, pp.4, 2020, https://doi.org/10.1371/journal.pone.0230851
  36. Additive Manufacturing of Epoxy Resins: Materials, Methods, and Latest Trends vol.59, pp.14, 2016, https://doi.org/10.1021/acs.iecr.9b06870
  37. Investigation of Mechanical Properties of Anisotropic Materials Used in Rapid Prototyping Technologies vol.989, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/msf.989.821
  38. Targeted Endodontic Microsurgery: Digital Workflow Options vol.46, pp.6, 2016, https://doi.org/10.1016/j.joen.2020.02.006
  39. Emerging Applications of Additive Manufacturing in Biosensors and Bioanalytical Devices vol.5, pp.7, 2016, https://doi.org/10.1002/admt.202000171
  40. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide vol.12, pp.3, 2016, https://doi.org/10.1088/1758-5090/ab6d37
  41. Accuracy of a simplified 3D-printed implant surgical guide vol.124, pp.2, 2020, https://doi.org/10.1016/j.prosdent.2019.06.006
  42. Silicone models of the aortic root to plan and simulate interventions vol.31, pp.2, 2016, https://doi.org/10.1093/icvts/ivaa068
  43. Accuracies of 3D printers with hard and soft materials vol.26, pp.7, 2016, https://doi.org/10.1108/rpj-09-2019-0236
  44. Characterization of three‐dimensional printed thermal‐stimulus polylactic acid‐hydroxyapatite‐based shape memory scaffolds vol.41, pp.9, 2020, https://doi.org/10.1002/pc.25683
  45. Study on the interaction characteristics of acrylonitrile butadiene styrene and UV laser vol.20, pp.3, 2020, https://doi.org/10.1007/s43452-020-00072-8
  46. Three-Dimensional Printing in Medical and Allied Health Practice: A Literature Review vol.51, pp.3, 2016, https://doi.org/10.1016/j.jmir.2020.06.003
  47. 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold vol.89, pp.None, 2016, https://doi.org/10.1016/j.polymertesting.2020.106722
  48. Progress in and Outlook for Cryogenic Microcooling vol.14, pp.4, 2020, https://doi.org/10.1103/physrevapplied.14.044044
  49. Three‐dimensional printing facilitates surgical planning for resection of an atypical cardiac myxoma vol.35, pp.10, 2016, https://doi.org/10.1111/jocs.14896
  50. A review of flexible force sensors for human health monitoring vol.26, pp.None, 2020, https://doi.org/10.1016/j.jare.2020.07.001
  51. Mimicking the Mechanical Properties of Aortic Tissue with Pattern-Embedded 3D Printing for a Realistic Phantom vol.13, pp.21, 2016, https://doi.org/10.3390/ma13215042
  52. Patient-specific and hyper-realistic phantom for an intubation simulator with a replaceable difficult airway of a toddler using 3D printing vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-67575-5
  53. Geometric accuracy of an acrylonitrile butadiene styrene canine tibia model fabricated using fused deposition modelling and the effects of hydrogen peroxide gas plasma sterilisation vol.16, pp.1, 2016, https://doi.org/10.1186/s12917-020-02691-y
  54. 3D printing of radioactive phantoms for nuclear medicine imaging vol.7, pp.1, 2020, https://doi.org/10.1186/s40658-020-00292-0
  55. Application of CBCT data and three-dimensional printing for endodontic diagnosis and treatment: Three case reports vol.9, pp.3, 2016, https://doi.org/10.4103/njecp.njecp_20_21
  56. Realization of Open Software Chain for 3D Modeling and Printing of Organs in Simulation Centers: Example of Renal Pelvis Reconstruction vol.78, pp.1, 2016, https://doi.org/10.1016/j.jsurg.2020.06.035
  57. Print and Try Technique: 3D-Printing of Teeth with Complex Anatomy a Novel Endodontic Approach vol.11, pp.4, 2021, https://doi.org/10.3390/app11041511
  58. Patient-Specific Quality Assurance Using a 3D-Printed Chest Phantom for Intraoperative Radiotherapy in Breast Cancer vol.11, pp.None, 2016, https://doi.org/10.3389/fonc.2021.629927
  59. Dimensional Accuracy of Dental Models for Three-Unit Prostheses Fabricated by Various 3D Printing Technologies vol.14, pp.6, 2016, https://doi.org/10.3390/ma14061550
  60. 3D Printing for Soft Tissue Regeneration and Applications in Medicine vol.9, pp.4, 2016, https://doi.org/10.3390/biomedicines9040336
  61. Fused filament printing of specialized biomedical devices: a state-of-the art review of technological feasibilities with PEEK vol.27, pp.3, 2016, https://doi.org/10.1108/rpj-06-2020-0139
  62. Making use of three‐dimensional models of teeth, manufactured by stereolithographic technology, in practical teaching of endodontics vol.25, pp.2, 2016, https://doi.org/10.1111/eje.12604
  63. Lessons learned from COVID-19 and 3D printing vol.46, pp.None, 2016, https://doi.org/10.1016/j.ajem.2020.08.010
  64. Optimization of Computed Tomography Angiography Protocols for Follow-Up Type B Aortic Dissection Patients by Using 3D Printed Model vol.11, pp.15, 2016, https://doi.org/10.3390/app11156844
  65. Three-Dimensional Printing for Cancer Applications: Research Landscape and Technologies vol.14, pp.8, 2021, https://doi.org/10.3390/ph14080787
  66. Additive Fabrication of a Vascular 3D Phantom for Stereotactic Radiosurgery of Arteriovenous Malformations vol.8, pp.4, 2021, https://doi.org/10.1089/3dp.2020.0305
  67. Computer Assisted Surgery and 3D Printing in Orthopaedic Oncology: A Lesson Learned by Cranio-Maxillo-Facial Surgery vol.11, pp.18, 2016, https://doi.org/10.3390/app11188584
  68. Additive Manufacturing of Zirconia Ceramic and Its Application in Clinical Dentistry: A Review vol.9, pp.9, 2016, https://doi.org/10.3390/dj9090104
  69. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients vol.11, pp.9, 2021, https://doi.org/10.3390/life11090910
  70. A 3D Food Printing Process for the New Normal Era: A Review vol.9, pp.9, 2016, https://doi.org/10.3390/pr9091495
  71. A review of additive manufacturing applications in ophthalmology vol.235, pp.10, 2021, https://doi.org/10.1177/09544119211028069
  72. Establishing a point-of-care additive manufacturing workflow for clinical use vol.36, pp.19, 2016, https://doi.org/10.1557/s43578-021-00270-x
  73. Utilizing patient-specific 3D printed guides for graft reconstruction in thoracoabdominal aortic repair vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-97541-8