DOI QR코드

DOI QR Code

Suggestion of a Model for Filling Coefficient of Hydraulic Cylinder in Concrete Pump

콘크리트펌프 유압실린더의 충진율 모델 제안

  • Received : 2016.06.09
  • Accepted : 2016.06.21
  • Published : 2016.06.30

Abstract

In general, piston pumps are frequently used for concrete pumping. Filling coefficient signifies the ratio volume of a hydraulic cylinder to volume of concrete inside the cylinder. Therefore, it may be considered as a parameter directly affecting the flow rate and efficiency for concrete pumping. However, accurate analyses on this aspect have not yet been performed. In this paper, the data measured from horizontal pipeline pumping tests for 350m and 548m in length was analyzed to identify the relationships of rheological properties of concrete and stroke time with the filling coefficient. In addition, an equation allowing prediction of the filling coefficient from rheological properties of concrete and stroke time has been suggested.

콘크리트의 펌핑에는 일반적으로 피스톤 펌프를 많이 사용한다. 충진율은 피스톤 펌프의 실린더 부피와 실린더 내에 채워지는 콘크리트의 부피비를 의미한다. 따라서 콘크리트 펌핑에서 토출량과 펌핑 효율에 직접적으로 영향을 미치는 인자라고 할 수 있다. 하지만 아직까지 이에 대한 정확한 분석은 이루어지지 않고 있다. 이 연구에서는 기존에 수행된 350m와 548m 수평배관 펌핑 실험 데이터를 바탕으로 콘크리트의 유동특성, 토출량, 그리고 스트로크 시간과 콘크리트펌프 충진율과의 관계를 파악하였다. 또한 콘크리트의 유동특성과 스트로크 시간으로부터 충진율을 계산할 수 있는 모델을 제안하였다.

Keywords

References

  1. Choi, M.S., Kim, Y.S., Kim, J.H., Kim, J.S., Kwon, S.H. (2014a). Effects of an externally imposed electromagnetic field on the formation of a lubrication layer in concrete pumping, Construction and Building Materials, 61, 18-23. https://doi.org/10.1016/j.conbuildmat.2014.02.071
  2. Choi, M.S., Kim, Y.J., Jang, K.P., Kwon, S.H. (2014b). Effect of the coarse aggregate size on pipe flow of pumped concrete, Construction and Building Materials, 66, 723-730. https://doi.org/10.1016/j.conbuildmat.2014.06.027
  3. Golaszewski, J., Szwabowski, J. (2004). Influence of superplasticizers on rheological behaviour of fresh cement mortars, Cement and Concrete Research, 34(2), 235-248. https://doi.org/10.1016/j.cemconres.2003.07.002
  4. Jacobsen, S., Haugan, L., Hammer, T.A., Kalogiannidis, E. (2009). Flow conditions of fresh mortar and concrete in different pipes, Cement and Concrete Research, 39(11), 997-1006. https://doi.org/10.1016/j.cemconres.2009.07.005
  5. Jeong, J.H., Jang, K.P., Park, C.K., Lee, S.H., Kwon, S.H. (2016). Effect of admixtures on pumpability for high-strength concrete, ACI Materials Journal, 113(3), 323-333.
  6. Kaplan, D., Larrard, F.D., Sedran, T. (2005). Design of concrete pumping circuit, ACI Materials Journal, 102(2), 110-117.
  7. Koehler, E.P., Fowler, D.W., Ferraris, C.F., Amziane, S. (2006). A new portable rheometer for fresh self-consolidating concrete, Workability of SCC: Roles of Its Constituents and Measurement Techniques, 233, 97-116.
  8. Kwon, S.H., Jang, K.P., Kim, J.H., Shah, S.P. (2016). State of the art on prediction of concrete pumping, International Journal of Concrete Structures and Materials, 5(18), 1-11.
  9. Kwon, S.H., Jo, S.D., Park, C.K., Jeong, J.H., Lee, S.H. (2013a). Prediction of concrete pumping: Part I- Development of new tribometer for analysis of lubricating layer, ACI Materials Journal, 110(6), 647-656.
  10. Kwon, S.H., Jo, S.D., Park, C.K., Jeong, J.H., Lee, S.H. (2013b). Prediction of concrete pumping: Part II- Analytical prediction and experimental verification, ACI Materials Journal, 110(6), 657-668.
  11. Ngo, T.T., Kadri, E.H., Bennacer, R., Cussigh, F. (2010). Use of tribometer to estimate interface friction and concrete boundary layer composition during the fluid concrete pumping, Construction and Building Materials, 23(7), 1253-1261.