DOI QR코드

DOI QR Code

재생 유기플래시 사이클의 열역학적 성능 해석

Thermodynamic Performance Analysis of Regenerative Organic Flash Cycle

  • 김경훈 (금오공과대학교 기계공학과) ;
  • 김만회 (경북대학교 기계공학부)
  • Kim, Kyoung Hoon (Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology) ;
  • Kim, Man Hoe (School of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2016.04.11
  • 심사 : 2016.07.26
  • 발행 : 2016.09.01

초록

최근 들어 작동유체가 액체 상태를 유지하며 흡열 과정이 일어나는 증기동력사이클인 유기플래시 사이클이 제안되었다. 본 연구에서는 재생을 이용한 수정 유기플래시 사이클을 제안하고 현열 형태의 저온 열원을 사용하는 시스템의 열역학적 성능 해석을 수행하였으며 작동유체나 플래시 온도가 순생산 동력이나 열효율 등 시스템의 성능에 미치는 영향을 체계적으로 분석하고 논의하였다. 해석 결과는 시스템의 순생산동력은 플래시 온도에 대해 최대값을 갖지만 열효율은 플래시 온도에 따라 상승함을 보여준다. 재생 사이클은 기존의 유기플래시 사이클에 비해 시스템 열효율이 높고 저온 열원의 동력 변환에 있어 성능 개선을 위한 잠재성을 보여준다.

Recently organic flash cycle (OFC) has been proposed which is a vapor power cycle where heat addition occurs with the working fluid remaining in the liquid state. This study proposes a modified OFC with regeneration and carries out thermodynamic performance analysis of the system utilizing low-temperature heat source in the form of sensible energy. Effects of working fluid and flash temperature are systemically investigated on the system performance such as net power production and thermal efficiency. Results show that the net power production has a peak value with respect to the flash temperature but the thermal efficiency increases with the flash temperature. The regenerative system shows higher thermal efficiency compared to the original OFC and improved potential for recovery of low-temperature heat sources.

키워드

참고문헌

  1. Bao, J. and Zhao, L., 2013, "A Review of Working Fluid and Expander Selections for Organic Rankine cycle," Renew. Sustain. Energy Rev., Vol. 24, pp. 325-342. https://doi.org/10.1016/j.rser.2013.03.040
  2. Lecompte, S., Huisseune, H., van den Broek, M., Vanslambrouck, B. and De Paepe, N., 2015, "Review of Organic Rankine Cycle (ORC) Architectures for Waste Heat Recovery," Renew. Sustain. Energy Rev., Vol. 47, pp. 448-461. https://doi.org/10.1016/j.rser.2015.03.089
  3. Dresher, U. and Brueggemann, D., 2007, "Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants," Appl. Therm. Eng., Vol. 27, pp. 223-228. https://doi.org/10.1016/j.applthermaleng.2006.04.024
  4. Hung, T. C., Wang, S. K., Kuo, C. H., Pei, B. S. and Tsai, K. F., 2010, "A Study of Organic Working Fluids on System Efficiency of an ORC using Low-grade Energy Sources," Energy, Vol. 35, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
  5. Delgadotorres, A. and Garciarodriguez, L., 2007, "Double Cascade Organic Rankine Cycle for Solardriven Reverse Osmosis Desalination," Desalination, Vol. 216, pp. 306-313. https://doi.org/10.1016/j.desal.2006.12.017
  6. Tchanche, B. F., Papadakis, G. and Frangoudakis, A., 2009, "Fluid Selection for a Low-temperature Solar Organic Rankine Cycle," Applied Thermal Eng., Vol. 29, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  7. Kim, K. H. and Perez-Blanco, H., 2015, "Performance Analysis of a Combined Organic Rankine Cycle and Vapor Compression Cycle for Power and Refrigeration Cogeneration," Appl. Therm. Eng., Vol. 91, pp. 964-974. https://doi.org/10.1016/j.applthermaleng.2015.04.062
  8. Mago, P. J., Chamra, L. M., Srinivasan, K. and Somayaji, C., 2008, "An Examination of Regenerative Organic Rankine Cycles using Dry Fluids," Appl. Therm. Eng., Vol. 28, pp. 998-1007. https://doi.org/10.1016/j.applthermaleng.2007.06.025
  9. Desai, N. B. and Bandyopadhyay, S., 2009, Process Integration of Organic Rankine Cycle," Energy, Vol. 34, pp. 1674-1686. https://doi.org/10.1016/j.energy.2009.04.037
  10. Meinel, D., Wieland, C. and Spliethoff, H., 2014, "Effect and Comparison of Different Working Fluids on a Two-stage Organic Rankine Cycle (ORC) Concept," Appl. Therm. Eng., Vol. 63, pp. 246-253. https://doi.org/10.1016/j.applthermaleng.2013.11.016
  11. Ho, T., Mao, S. S. and Greif, R., 2012, "Comparison of the Organic Flash Cycle (OFC) to Other Advanced Vapor Cycles for Intermediate and High Temperature Waste Heat Reclamation and Solar Thermal Energy," Energy, Vol. 42, pp. 213-223. https://doi.org/10.1016/j.energy.2012.03.067
  12. Ho, T., Mao, S. S. and Greif, R., 2012, "Increased Power Production through Enhancements to the Organic Flash Cycle (OFC)," Energy, Vol. 45, pp. 686-695. https://doi.org/10.1016/j.energy.2012.07.023
  13. Lai, N. A. and Fischer, J., 2012, "Efficiencies of Power Flash Cycles," Energy, Vol. 44, pp. 1017-1027. https://doi.org/10.1016/j.energy.2012.04.046
  14. Wang, W. H., Cheng, X. T. and Liang, X. G., 2015, "T-Q Diagram Analyses and Entransy Optimization of the Organic Flash Cycle (OFC)," Science China, Vol. 58, pp. 630-637. https://doi.org/10.1007/s11431-014-5765-0
  15. Bombarda, P., Gaia, M., Invernizzi, C. and Pietra, C., 2015, "Comparison of Enhanced Organic Rankine Cycles for Geothermal Power Units," Proc. World Geothermal Congress 2015, Melbourne, Australia, 19-25.
  16. Lee, H. Y., Park, S. H. and Kim, K. H., 2016, "Comparative Analysis of Thermodynamic Performance and Optimization of Organic Flash Cycle (OFC) and Organic Rankine Cycle (ORC)," Appl. Therm. Eng., Vol. 100, pp. 680-690. https://doi.org/10.1016/j.applthermaleng.2016.01.158
  17. Yang, T., Chen, G. J. and Gou, T. M., 1997, "Extension of the Wong-Sandler Mixing Rule to the Three-parameter Patel-Teja Equation of State: Application up to the Near-critical Region," Chem. Eng., Vol. 67, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0
  18. Gao, J., Li, L. D. and Ru, S. G., 2004, "Vapor-liquid Equilibria Calculation for Asymmetric Systems using Patel-Teja Equation of State with a New Mixing Rule," Fluid Phase Equil., Vol. 224, pp. 213-219. https://doi.org/10.1016/j.fluid.2004.05.007
  19. Yaws C. L., 1999, "Chemical Properties Handbook," McGraw-Hill.