DOI QR코드

DOI QR Code

Comparison of Acceleration-Compensating Mechanisms for Improvement of IMU-Based Orientation Determination

IMU기반 자세결정의 정확도 향상을 위한 가속도 보상 메카니즘 비교

  • Lee, Jung Keun (Dept. of Mechanical Engineering, Hankyong Nat'l Univ.)
  • 이정근 (한경대학교 기계공학과)
  • Received : 2016.02.01
  • Accepted : 2016.07.19
  • Published : 2016.09.01

Abstract

One of the main factors related to the deterioration of estimation accuracy in inertial measurement unit (IMU)-based orientation determination is the object's acceleration. This is because accelerometer signals under accelerated motion conditions cannot be longer reference vectors along the vertical axis. In order to deal with this issue, some orientation estimation algorithms adopt acceleration-compensating mechanisms. Such mechanisms include the simple switching techniques, mechanisms with adaptive estimation of acceleration, and acceleration model-based mechanisms. This paper compares these three mechanisms in terms of estimation accuracy. From experimental results under accelerated dynamic conditions, the following can be concluded. (1) A compensating mechanism is essential for an estimation algorithm to maintain accuracy under accelerated conditions. (2) Although the simple switching mechanism is effective to some extent, the other two mechanisms showed much higher accuracies, particularly when test conditions were severe.

IMU기반 자세결정에 있어 추정 정확도의 저하요인 중 주요한 한 가지는 운동체의 가속도이다. 이는 가속도가 크게 발생하는 경우 가속도계 신호는 더이상 수직축 참조벡터가 될 수 없기 때문이다. 이에 대한 대책으로 일부 자세추정 알고리즘에서는 가속도 보상 메카니즘이 적용되어 왔다. 가장 보편적이고 간단한 스위칭 방법부터 적응추정방식, 가속도 모델기반 방식 등이 제안되어 왔으나, 이들 보상 메카니즘에 대한 비교분석은 이루어 지지 않았다. 본 논문은 쿼터니언기반의 Pseudo 칼만필터를 바탕으로 하여 세 가지 가속도 보상 메커니즘의 성능을 비교분석하였다. 가속조건 실험 분석을 통해 다음을 확인할 수 있었다. (1) 가속구간에서의 추정정확도 저하를 방지하기 위해선 가속도 보상 메카니즘이 반드시 필요하다. (2) 단순 스위칭 방법도 상당한 효과를 보였으나, 보다 정교한 적응추정 방식과 가속도 모델방식이 동등수준으로 가장 정확한 결과를 보였다.

Keywords

References

  1. Cho, B.-Su, Moon, W.-S., Seo, W.-J. and Baek, K.-R., 2011, "A Dead Reckoning Localization System for Mobile Robots Using Inertial Sensors and Wheel Revolution Encoding," J. Mech. Sci. Tech., Vol. 25, No. 11, pp. 2907-2917. https://doi.org/10.1007/s12206-011-0805-1
  2. Oh, S. H., Hwang, D.-H., Park, C., Lee, S. J. and Kim, S. H., 2005, "Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV," J. Mech. Sci. Tech., Vol. 19, No. 8, pp. 1529-1543. https://doi.org/10.1007/BF03023931
  3. Lee, J. K. and Park, E. J., 2009, "A Fast Quaternion-based Orientation Optimizer Via Virtual Rotation for Human Motion Tracking," IEEE Trans. Biomed. Eng., Vol. 56, No. 5, pp. 1574-1582. https://doi.org/10.1109/TBME.2008.2001285
  4. Kim, J. H., Yoon, H.-S., Moon, H., Choi, H. R. and Koo, J. C., 2015, "Application of a Sensor Fusion Algorithm for Improving Grasping Stability," J. Mech. Sci. Tech., Vol. 29, No. 7, pp. 2693-2698. https://doi.org/10.1007/s12206-015-0516-0
  5. Lee, J. K. and Park, E. J., 2009, "Minimum-order Kalman Filter with Vector Selector for Accurate Estimation of Human Body Orientation," IEEE Trans. Robot., Vol. 25, No. 5, pp. 1196-1201. https://doi.org/10.1109/TRO.2009.2017146
  6. Park, K. J. and Won, M., 2014, "People Tracking and Accompanying Algorithm for Mobile Robot Using Kinect Sensor and Extended Kalman Filter," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 4, pp. 345-354. https://doi.org/10.3795/KSME-A.2014.38.4.345
  7. Kang, B. S. and Yeo, G. H., 2009, "A Study on Development of a Reconfigurable Mobile Robot and Dead-reckoning Using Extended Kalman Filter," Trans. Korean Soc. Mech. Eng. A, Vol. 33, No. 5, pp. 455-462. https://doi.org/10.3795/KSME-A.2009.33.5.455
  8. Sabatini, A. M., 2006, "Quaternion-based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing," IEEE Trans. Biomed. Eng., Vol. 53, No. 7, pp. 1346-1356. https://doi.org/10.1109/TBME.2006.875664
  9. Suh, Y. S., 2010, "Orientation Estimation Using a Quaternion-based Indirect Kalman Filter with Adaptive Estimation of External Acceleration," IEEE Trans. Instrum. Meas., Vol. 59, No. 12, pp. 3296-3305. https://doi.org/10.1109/TIM.2010.2047157
  10. Roetenberg, D., Luinge, H. J., Baten, C. T. and Veltink, P. H., 2005, "Compensation of Magnetic Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation," IEEE Trans. Neural Syst. Rehab. Eng., Vol. 13, No. 3, pp. 395-405. https://doi.org/10.1109/TNSRE.2005.847353
  11. Lee, J. K., Park, E. J. and Robinovitch, S. N., 2012, "Estimation of Attitude and External Acceleration Using Inertial Sensor Measurement During Various Dynamic Conditions," IEEE Trans. Instrum. Meas., Vol. 61, No. 8, pp. 2262-2273. https://doi.org/10.1109/TIM.2012.2187245
  12. Lee, J. K., 2016, "Quaternion-based Pseudo Kalman Filter for Wearable Inertial/Magnetic Sensor Applications," MATEC Web of Conferences, Vol. 59 (01009).