초록
소셜미디어의 정치사회적인 활용도가 높아짐에 따라 소셜빅데이터 기반 온라인 동향분석 및 모니터링 기술에 대한 수요 역시 급증하고 있다. 본 논문에서는 이러한 요구에 부합, 특히 여론 형성의 악영향을 끼치는 부정적 이슈 탐지를 위해 사회적으로 파장이 큰 이슈 중 공공여론이 부정적으로 형성될 이슈를 '리스크'로 정의하고 세부 유형을 분류한다. 리스크 유형 정의를 위해 뉴스 문서집합을 대상으로 전수조사를 실시하였으며, 이슈 분야 즉 도메인별 특성을 파악하여 세부 유형을 정의한다. 또한 뉴스와 같은 공적미디어를 통해 정의된 리스크 유형이 개인화된 소셜 미디어에 나타난 리스크 유형과 어떤 차이가 있는지를 알아보기 위해 교차분석을 수행한다. 조사 결과에 따라 6개의 도메인별로 58개의 세부 유형을 정의하고 기계학습 방법을 통해 자동 분류 학습 모델을 구축한다. 실험 결과를 통해 소셜 미디어에 나타난 사회적 이슈 리스크를 자동으로 탐지, 분류가 가능함을 보인다.
In accordance with the increased political and social utilization of social media, demands on online trend analysis and monitoring technologies based on social bigdata are also increasing rapidly. In this paper, we define 'risk' as issues which have probability of turn to negative public opinion among big social issues and classify their types in details. To define risk types, we conduct a complete survey on news documents and analyzed characteristics according to issue domains. We also investigate cross-medias analysis to find out how different public media and personalized social media. At the result, we define 58 risk types for 6 domains and developed automatic classification model based on machine learning algorithm. Based on empirical experiments, we prove the possibility of automatic detection for social issue risk in social media.