DOI QR코드

DOI QR Code

Evaluation of Chloride Diffusion Coefficients in Cold Joint Concrete Considering Tensile and Compressive Regions

인장 및 압축영역에서 콜드조인트 콘크리트의 염화물 확산계수 평가

  • Mun, Jin-Man (Civil and Environmental Engineering, Hannam University) ;
  • Kwon, Seung-Jun (Civil and Environmental Engineering, Hannam University)
  • 문진만 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2016.04.04
  • Accepted : 2016.05.10
  • Published : 2016.08.31

Abstract

Concrete member has been subjected to dead and live loads in use, and the induced stress can affect not only structural but also durability behavior. In mass concrete construction, construction joint are required, however cold joint usually occur due to poor surface treatment and delayed concrete placing. The concrete with joint is vulnerable to both shear stress and chloride ingress. This paper presents a quantitative evaluation of cold joint and loading conditions on chloride diffusion behavior. With increasing tensile stress from 30% to 60%, chloride diffusion coefficient gradually increases, which shows no significant difference from result in the sound concrete. However chloride diffusion coefficient under 30% level of compressive stress significantly increases by 1.70 times compared with normal condition. Special attention should be paid for the enlarged diffusion behavior cold joint concrete under compressive stress.

콘크리트는 공용기간동안 구조물 자체의 자중 및 이동 하중에 따른 응력을 받게 되며, 이러한 응력은 구조적인 거동뿐 아니라 내구적인 거동에도 영향을 준다. 대단위 콘크리트 부재의 시공은 시공이음을 요구하는데, 면처리 불량 또는 이어치기의 지연에 의해 콜드조인트가 발생하게 된다. 이러한 콜드조인트는 전단력에 취약할 뿐 아니라 염화물 확산성에도 영향을 미친다. 본 연구에서는 응력조건과 콜드조인트가 콘크리트의 염화물 확산에 미치는 영향을 정량적으로 평가하였다. 콜드조인트를 가진 콘크리트는 인장하중 수준이 30%에서 60%로 커질 때, 확산계수는 꾸준하게 증가하여 건전부와 큰 차이를 보이지 않았다. 그러나 압축부에서는 하중재하 30% 수준부터 콜드조인트 콘크리트에서 염화물 확산계수가 크게 증가하여 확산계수가 170% 이상 증가하였다. 이러한 특성은 압축하중을 받는 건전부 콘크리트와 큰 차이가 있으므로 이음부를 가지는 콘크리트의 내구성 설계에 주의가 필요하다.

Keywords

References

  1. Broomfield, J. P., Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London: E&FN, 1997, pp.1-15.
  2. RILEM, Durability Design of Concrete Structures, Report of RILEM Technical Committee 130-CSL, E&FN, 1994, pp.28-52.
  3. Song, H.-W., Pack, S.-W., Lee, C.-H., and Kwon, S.-J., "Service life prediction of concrete structures under marine environment considering coupled deterioration", Journal of Restoration of Build Monuments, Vol.12, No.4, 2006, pp. 265-284.
  4. Ishida, T., and Maekawa, K., Modeling of durability performance of cementitious materials and structures based on thermo-hygro physics, RILEM, In: Proc-PRO 29: Life Prediction and Aging Management of Concrete Structures, Vol.1, 2003, pp.39-49.
  5. Park, S. S., Kwon, S.-J., and Jung, S. H., "Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation", Construction and Building Materials, Vol.29, 2012, pp.183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  6. Tang, L., "Electrically accelerated methods for determining chloride diffusivity in concrete-current development", Magazine of Concrete Research, Vol.48, No.176, 1996, pp. 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  7. ASTM C1202, Electrical indication of concrete's ability to resist chloride ion penetration, Annual Book of American Society for Testing Materials Standards, 1993.
  8. JSCE, Concrete Cold Joint Problems and Countermeasures, Concrete Library Japan 387 Society of Civil Engineering, 2000, p.103.
  9. ACI 224.3R-95, Joints in Concrete Construction, American Concrete Institute, USA, Reapproved, 2001.
  10. Park, M.-S., "A study on control of carbonation at cold joint of reinforced concrete structures", M.A.Sc Thesis, YONSEI University, 2001.
  11. Yokozeki, K., Okada, K., Tsutsumi, T., and Watanabe, K., "Prediction of the service life of RC with crack exposed to chloride attack", Journal of Symposium: Rehabilitation of Concrete Structure, Vol.10, 1998, pp.1-6.
  12. Kwon, S.-J., and Na, U.-J., "Prediction of durability for RC columns with crack and joint under carbonation based on probabilistic approach", International Journal of Concrete Structures and Materials, Vol.5, No.1, 2011, pp.11-18. https://doi.org/10.4334/IJCSM.2011.5.1.011
  13. Kermani, A., "Permeability of stressed concrete", Building Research and Information, Vol.19, No.6, 1991, pp.360-366. https://doi.org/10.1080/09613219108727156
  14. Hoseini, M., Bindiganabile, V., and Banthia, N., "The effect of mechanical stress on permeability of concrete: A review", Cement and Concrete Composites, Vol.31, No.4, 2009, pp. 213-220. https://doi.org/10.1016/j.cemconcomp.2009.02.003
  15. Banthia, N., Biparva, A., and Mindess, S., "Permeability of concrete under stress", Cement and Concrete Research, Vol.35, No.9, 2005, pp.1651-1655. https://doi.org/10.1016/j.cemconres.2004.10.044
  16. Baroghel-Bouny, V., "Effect of uniaxial compressive loading on gas permeability and chloride diffusion coefficient of concrete and their relationship", Cement and Concrete Research, Vol.52, 2013, pp.131-139. https://doi.org/10.1016/j.cemconres.2013.05.013
  17. Yang, Y., Tong, H. Z., and Xu, S. F., Effects of load level on water permeability of concrete, International Conference on Micro-structure Related Durability of Cementitious Composites, Nanjing, China, 2008, pp.545-552.
  18. Du, X., Jin, L., and Zhang, R., "Chloride diffusivity in saturated cement paste subjected to external mechanical loadings", Ocean Engineering, Vol.95, 2015, pp.1-10. https://doi.org/10.1016/j.oceaneng.2014.11.028
  19. Otsuki, N., Nagtataki, S., Nakashita, K., "Evaluation of the $AgNO_3$ solution spray method for measurement of chloride penetration into hardened cementitious matrix materials", ACI Mater Journal, Vol.89, No.6, 1992, pp.587-592.
  20. Choi, S.-J., Kang, S.-P., Kim, S.-C., and Kwon, S.-J., "Analysis Technique on Water Permeability in Concrete with Cold Joint considering Micro Pore Structure and Mineral Admixture", Advances in Materials Science and Engineering, Vol.2015, Article ID 610428, pp.1-10.
  21. Kim, D.-H., Lim, N.-G., and Horiguchi, T., "Effect of Compressive Loading on the Chloride Penetration of Concrete Mixed with Granulated Blast Furnace Slag", Journal of the Korea Institute of Building Construction, Vol.9, No.6, 2009, pp.71-78. https://doi.org/10.5345/JKIC.2009.9.6.071
  22. Bae, Y.-W., and Lim, N.-G., "Resistance of Chloride Penetration of Fiber Reinforced Concrete Under Loading Condition", Journal of the Architectural Institute of Korea Structure and Construction, Vol.28, No.3, 2012, pp.67-74. https://doi.org/10.5659/JAIK_SC.2012.28.3.67