DOI QR코드

DOI QR Code

Film Properties of Al Thin Films Depending on Process Parameters and Film Thickness Grown by Sputter

스퍼터로 성장된 알루미늄 박막의 공정 변수와 박막 두께에 따른 물성

  • Oh, Il-Kwon (School of Electrical and Electronics Engineering, Yonsei University) ;
  • Yoon, Chang Mo (School of Electrical and Electronics Engineering, Yonsei University) ;
  • Jang, Jin Wook (Samsung Electronics Test & Package Center) ;
  • Kim, Hyungjun (School of Electrical and Electronics Engineering, Yonsei University)
  • 오일권 (연세대학교 전기전자공학부) ;
  • 윤창모 (연세대학교 전기전자공학부) ;
  • 장진욱 (삼성전자 Test & Package Center) ;
  • 김형준 (연세대학교 전기전자공학부)
  • Received : 2016.03.25
  • Accepted : 2016.07.08
  • Published : 2016.08.27

Abstract

We developed an Al sputtering process by varying the plasma power, process temperature, and film thickness. We observed an increase of hillock distribution and average diameter with increasing plasma power, process temperature, and film thickness. Since the roughness of a film increases with the increase of the distribution and average size of hillocks, the control of hillock formation is a key factor in the reduction of Al corrosion. We observed the lowest hillock formation at 30 W and $100^{\circ}C$. This growth characteristic of sputtered Al thin films will be useful for the reduction of Al corrosion in the future of the electronic packaging field.

Keywords

References

  1. G. Harman, Wirebonding in Microelectronics, Chap. 5, McGraw Hill, New York (2010).
  2. X. J. Fan and E. Suhir, Moisture Sensitivity of Plastic Packages of IC Devices, Chap. 2, Springer (2010).
  3. S. H. Ahn, T. J. Cho, Y. S. Kim, and S. Y. Oh, in Proceedings of the 46th ECTC (1996) p.107.
  4. S. Kang and P. S. Ho, J. Electron. Mater., 26, 805 (1997). https://doi.org/10.1007/s11664-997-0255-9
  5. S. Hyun, W. L. Brown and R. P. Vinci, Appl. Phys. Lett., 83, 4411 (2003). https://doi.org/10.1063/1.1629381
  6. J. M. Abdel Kader and A. M. Shams El Din, Corros. Sci., 10, 551 (1970). https://doi.org/10.1016/S0010-938X(70)80049-X
  7. S. S. Sampat and J. C. Vora, Corros. Sci., 14, 591 (1974). https://doi.org/10.1016/S0010-938X(74)80023-5
  8. L. A. Shalaby, K. M. El Sobki and A. A. Abdel Azim, Corros. Sci., 16, 637 (1976). https://doi.org/10.1016/S0010-938X(76)80022-4
  9. G. A. El Mahd and S. S. Mahmoud, Corros. Sci., 51, 436 (1995). https://doi.org/10.5006/1.3293609
  10. N. C. Subramanyam, B. S. Sheshardi and S. M. Mayanna, Corros. Sci., 34, 563 (1993). https://doi.org/10.1016/0010-938X(93)90272-I
  11. R. Chattopadhyay, Surface Wear: analysis, treatment, and prevention, 1st ed., ASM International, USA (2001).
  12. W. Li and D. Y. Li, Acta Mater., 54, 445 (2006). https://doi.org/10.1016/j.actamat.2005.09.017
  13. John A. Thornton. J. Vac. Sci. Technol. A, 12, 4 (1975).
  14. A. K. Maayta and N. A. F. Al-Rawashdeh, Corros. Sci., 46, 1129 (2004). https://doi.org/10.1016/j.corsci.2003.09.009
  15. K. Kusaka, D. Taniguchib, T. Hanabusaa and K. Tominagaa, Vacuum, 59, 806 (2000). https://doi.org/10.1016/S0042-207X(00)00351-1
  16. S.-J. Hwang, J.-H. Lee, C.-O. Jeong and Y.-C. Joo, Scripta Mater., 56, 17 (2007). https://doi.org/10.1016/j.scriptamat.2006.09.001
  17. F. M. D'Heurle, Metall. Mater. Trans. B, 1, 725 (1970). https://doi.org/10.1007/BF02811600
  18. W. Tang, K. Xua, P. Wang and X. Lib, Microelectron. Eng., 66, 445 (2003). https://doi.org/10.1016/S0167-9317(02)00909-7
  19. Yu. V. Milman, S Luyckx, V. A Goncharuck and J. T Northrop, Int. J. Refractory Met. Hard Mater., 17, 39 (1999). https://doi.org/10.1016/S0263-4368(98)00038-9
  20. O. Sarikaya, Surf. Coat. Technol., 190, 388 (2005). https://doi.org/10.1016/j.surfcoat.2004.02.007